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Abstract 

In recent years, with the sustainable growth of the life expectancy, population 

aging becomes more apparent in Taiwan. Taiwan’s population of ages 65 and over 

will exceed 20% within 10 years, before 2025. (Source: National Development 

Council - Population Projection on 2014). Ageing is a key risk factor for cancer in 

Taiwan, the number of deaths over 65 years increased from 61% to 70% at 1996 to 

2015, and the proportion of deaths due to cancer (aged 65+) and death population 

(aged 65+) is from 21% (1996) rise to 25% (2015). According to World Cancer 

Report 2014 published by the World Health Organization shows that the incidence of 

cancer has increased from 12.7 million in 2008 to 14.1 million in 2012, an 11% 

increase. The total annual economic costs of cancer, not including long-term costs to 

families and caregivers, were approximate US$ 1.16 trillion in 2010, which amounts 

to more than 2% of the total global gross domestic product. Cancer is the leading 

cause of death in Taiwan for more than 30 consecutive years. The loss ratio (i.e., the 

ratio of claim to premium) of long-term health products seems to increase with the 

policy year and many insurance companies have 100% or more loss ratios after 15 

years. The mortality rate improvement of cancer patients complicates the pricing of 

cancer products, and the lack of availability of population data further limit the 

development of cancer mortality models. Many methods have been proposed to deal 

with longevity risk of annuity products, such as the longevity bond or natural hedging. 

Still, the longevity risk of health products is necessary to face in the future.   

                                                      
1
 Associate Professor, Department of Finance and Actuarial Science, Aletheia University, Taipei, 

Taiwan, Republic of China 

2 Professor, Department of Statistics, National Chengchi University, Taipei, Taiwan, Republic of 

China 



II 
 

In this study, we use the data from Taiwan National Health Insurance Research 

Database (NHIRD) to evaluate the challenge of designing cancer products. We use 

Gompertz’s and Generalised Age-Period-Cohort (GAPC) stochastic mortality models 

to explore the trend of cancer incidence and mortality rates. We found the Lee-Carter 

and Age-Period-Cohort models have the smaller estimation errors, and the CBD and 

Gompertz models are also good alternatives for the elderly, based on the Taiwan 

cancer empirical analysis. Most of Taiwan’s cancer insurance policies pay the insured 

when they have cancer and are still alive. The loss ratio of Taiwan’s cancer products is 

expected to grow and this can be deemed as a form of longevity risk (reimbursement 

risk). Furthermore, we construct whole-life first diagnosis benefit cancer and annuity 

policies to demonstrate the pure premium differences of incidence/mortality 

increments /reduction influence and consider the natural hedging effects of the 

combination of insurance products for insurers.  

 

Keywords: Longevity Risk, Stochastic Mortality Models, National Health Insurance 

Research Database, Loss Ratio, Natural Hedging   
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1. Preface 

In recent years, with the sustainable growth of the life expectancy in our country, 

population aging becomes more apparent. Taiwan’s population of ages 65 and over 

will exceed 20% within 10 years, before 2025. (Source: National Development 

Council - Population Projection on 2014). Rapid decrease in mortality is one of the 

causes of the population’s aging in Taiwan. Figure 1 is the mortality logarithm by age 

bracket. Mortality rates are declining continuously in all age brackets and female 

mortality rates have been improved more obvious. However, the changes from all age 

brackets are very different. There are a significant improvement on both genders at 

juvenile ages (especially around 10-year-old) and around the age of 20. The upheaved 

mortality caused by accidents for males around the age of 20 is longer exist, but the 

mortality for male above the age of 30 is slightly reduced in the past decade and there 

is almost no difference from the age of 40 to the age of 50. The mortality 

improvement on the female above the age of 30 is quite a lot. However, the process of 

aging population will cause the change of population structure and the impact of 

health condition. Smoking, unhealthy diet lifestyle and the increase of obesity 

population will cause the change of the main cause of death in Taiwan.  

Mortality improvement increased the life expectancy. The period life expectancy 

of Taiwan people increases about 0.2~0.3 years annually. Table 1 is the life 

expectancy excluded ten leading causes of death from 2009 to 2011. Cancer is the 

first specific cause of death and the greatest impact on life expectancy after remove it. 

Life expectancy will increase to 80.63 to male and 85.7 to female. Cancer is also the 

major cause of death in OECD advanced countries. It’s also around 28% of the total 

annual death among the OECD countries in 2009. Whether our country or OECD 

countries, male standardized mortality ratios were all higher than female, while in 

Korea and Japan (also OECD countries), male mortality is twice that of women.  
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Figure 1. The Trend of Mortality Rates in Taiwan 

 

Table 1. Life Expectancy Eliminated Specified Cause of Death 

(Top 10 Causes in 1999-2001 and 2009-11) 

 
Male Female 

2009-11 1999-2001 2009-11 1999-2001 

Cancer 4.17 3.93 2.88 2.68 

Heart Disease 1.38 1.08 1.11 0.96 

Accidents 1.08 1.69 0.73 0.80 

Cardiovascular Disease 0.88 1.28 0.66 1.28 

Pneumonia (Lung Disease) 0.71 0.34 0.63 0.24 

Diabete 0.66 0.74 0.48 1.36 

Chronic Liver Disease 0.64 0.65 0.34 0.35 

Lower Respiratory Illness 0.53 － 0.33 － 

Suicide 0.43 0.32 0.26 0.18 

Chronic Kidney Disease 0.34 0.30 0.23 0.42 

Life Expectancy 75.97 73.79 82.32 79.63 

Note: Numbers in red are those with significant increases from 1999-2001 to 

2009-11.  
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According to the American Cancer Society (ACS) report displays about 

1,658,370 new cancer cases are expected to be diagnosed in 2015. In 2015, about 

589,430 Americans are expected to die of cancer, or about 1,620 people per day. 

Cancer is the second most common cause of death in the US, exceeded only by heart 

disease, and accounts for nearly 1 of every 4 deaths. Taiwan cancer registry annual 

report 2015 (Source: Health Promotion Administration, Ministry of Health and 

Welfare) also shows that the new cancer patients were 96,694 in 2012 which means 

one person was diagnosed with cancer in every 5 minutes and 26 seconds. From the 

crude incidence data, 415 out of one hundred thousands were diagnosed with cancer. 

We expect the number of cancer patient will continue to increase in every year. This 

shows the health damage caused by cancer.  

Exploring the trend of cancer incidence and mortality will provide great help to 

decease prevention, treatment improvement, personal financial burden reduction, and 

the development of government’s public health policies. Many articles were focus on 

specific cancer to build models include: Shek and Godolphin (1988) used Cox 

proportional hazards model for Breast Cancer Survival. Rosner and Colditz(1996) 

proposed nonlinear regression methods developed log-incidence model of breast 

cancer incidence. Robertson and Boyle (1997) adopted the age-period-cohort model 

to interpret the time trends in breast cancer incidence and mortality rates in Scotland. 

Moger et al. (2004) applied frailty compound-Poisson distribution to modelling of 

testicular cancer incidence using Scandinavian data. Shibuya et al. (2005) modelled 

and projected lung cancer mortality in 4 industrialized countries by Age-period-cohort 

model. Di Cesare and Murphy (2009) analyzed trends and forecasted mortality rates 

for three major causes of death (lung cancer, influenza-pneumonia-bronchitis, and 

motor vehicle accidents) by the Bayesian, Lee-Carter, Booth-Maindonald-Smith, and 

Age-Period-Cohort models, to assess how far different causes of death need different 
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forecasting methods. They found that when a clear cohort pattern is detectable, such 

as with lung cancer, the Age-Period-Cohort model shows the best outcome. When 

complete and reliable historical trends are available the Bayesian model does not 

produce better results than the other models. Uddin et al. (2010) utilized logistic 

regression method to model of the Incidence of Breast Cancer in NWFP, Pakistan. 

Hoggart et al. (2012) presented a stratified survival model for lung cancer. Tharu et al. 

(2015) proposed Bayesian Age-Period-Cohort Model of Lung Cancer Mortality. 

Pokhrel and Tsokos (2015) applied functional data analysis techniques to model 

age-specific brain cancer mortality trend and forecast entire age-specific functions 

using exponential smoothing state-space models. The articles discuss all cancers were: 

Pompei and Wilson (2001) found a Beta distribution fits SEER (Surveillance, 

Epidemiology, and End Results (SEER) Program, based within the Cancer 

Surveillance Research Program at the National Cancer Institute) age-specific cancer 

incidence. Kruijshaar et al. (2002) explored the usefulness of incidence–prevalence–

mortality (IPM) models in improving estimates of disease epidemiology. Arbeev et al. 

(2005) discussed several mathematical models (a revised Strehler and Mildvan Model, 

Age-period-cohort models, A gamma-frailty model, The Armitage-Doll (AD) model, 

and so on) that address questions pertaining to the decline in human cancer incidence 

rates at oldest old ages.  

 

One of the advantages of using these models is their ease of use in the mortality 

projection. In the current study, similar to dealing with longevity risk in annuity, we 

have considered the Generalised Age-Period-Cohort (GAPC) stochastic mortality 

models (Villegas et al., 2016), which include most of the frequently used mortality 

models from the past studies, and applied them for projections. Our aim was to verify 
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which GAPC model is suitable for describing the cancer incidence and mortality 

rates.  

The current paper has been arranged as follows. Section 2 gives a brief 

introduction of Taiwan's National Health Insurance Research Databases (NHIRD) and 

describes the idea of handling big data, including the exploratory data analysis for 

cancer incidence and mortality rates. The introduction of proposed models and the 

evaluation of modeling cancer incidence and mortality rates and their appliactions are 

given in Section 3. In the final section, we provided a discussion and suggestions on 

dealing with the potential risks in cancer insurance.  

 

2. Exploratory Data Analysis of the Big Data  

Taiwan launched the NHI program on March 1, 1995, and about 99.68% Taiwan 

residents were enrolled in the program at the end of 2015. The data from the NHI 

program, including registration files and original claim data for reimbursement, were 

collected by the NHI Bureau. Based on the principle of privacy protection, personal 

identification numbers were de-identified by using the scrambling program twice. 

After the scrambling, the data were sent to the National Health Research Institutes 

(NHRI) for storage. Scholars from research institutes and universities can apply to the 

NHRI for the NHI data, by paying a fee based on the size of the data requested.  

Cancer is one of the Catastrophic Illnesses (CI) recorded in the NHI database. 

The CI is one of the key features in Taiwan’s NHI, and to ease some financial burden, 

the government provides some medical privilege and a co-payment waiver to people 

diagnosed with CI. In 2014, the CI patients were about 4% of Taiwan population 

(about 0.9 million) but about 27% of total NHI expenditure was spent. The cancer 

patients (about 0.45 million) spent approximately 35% of the total CI expenditures, 

which was around 65 billion NT dollars (or 2 billion US dollars).  
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In this study, we used all the records of the CI patients to avoid the possibility of 

biased selection for cancer data. The size of the CI related databases is huge, around 

228 GB, and the data size of cancer is approximately half of the CI data, about half 

million Taiwan people with cancer in 2016. Datasets considered in this study include 

the registry for beneficiaries (ID), registry for CI patients (HV), and CI patients’ 

original claim data extracted from the CD (ambulatory care expenditures by visits) 

data file (HV_CD).  We used database software (SQL) and applied big data 

techniques for handling data analysis, since it is impossible to use a regular statistical 

software to perform a data analysis.  

Considering the data quality, we used the data only during the period 2002-2011. 

The size and data quality complicate the analysis of big data, and the NHIRD showed 

no differences. The data codebook was used to check whether there was any problem 

in the data content. However, we can still find problems by cross-checking different 

databases. For example, the numbers of HV patients are different in the databases of 

HV and HV_CD (Table 2). The numbers of patients in HV_CD are close to (but 

slightly larger than) the official records from Ministry of Health and Welfare (MHW). 

It is possible that patients can have two or more than two records in the HV_CD 

database if they have more than one CIs. On average, about 5% of CI patients have 

more than one CIs. On the other hand, the numbers of patients in the HV database are 

too large, and it is likely that the HV records might not have been updated (e.g. CI 

patients passed away or recovered but are still in the list). We need to remove this 

kind of content errors before conducting any data analysis.  
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Table 2. Discrepancy between Databases 

Year 
HV HV_CD 

#Patients #Records #Patients #Visits 

2007 1,103,431 1,453,483 649,106 17,946,211 

2008 1,164,465 1,529,866 678,544 19,173,919 

2009 1,276,315 1,733,251 712,828 20,357,173 

2010 1,350,786 1,863,254 746,746 21,619,442 

2011 1,401,449 1,933,455 779,179 22,861,178 

 

The process of analyzing big data is tedious and time-consuming. Therefore, we 

used the example of judging whether a CI patient is alive as a demonstration. There is 

a data column (“death note”) in the HV_CD database showing the status (i.e. alive or 

dead) of each patient. However, the number of death recorded in this data column is 

too small. For example, the number of cancer deaths is more than 40,000 annually but 

only 7,000~8,000 deaths (e.g. 7,517 deaths in 2007) shown in this column, meaning 

under-reported deaths from the death note. Therefore, to judge whether a patient is 

dead or not, certain criteria were needed to be set.  

The cancer patients recorded in the HV and HV_CD database are those with 

malignant tumors between stage 1 and stage 4 who require medical treatments. Thus, 

we can use the nature of cancer patients’ medical visits to judge if they are still alive. 

We found that, if cancer patients stop visiting doctors, especially after a series of 

regular treatments, it is likely that health conditions of the patients are worsening, is 

similar to Lee et al. (2011) research results.  

After a few trial-and-errors, we determined to use the condition “no outpatient 

records for two consecutive years” (Condition 1) for cancer patients to judge if a 

patient is dead, since the percentage of misjudgment was smaller than 5%. We used 
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the International Classification of Diseases (ICD) codes in the medical records to 

identify whether cancer patients were receiving medical treatments. In addition, we 

also included the condition, whether the cancer patients stop visiting doctors suddenly, 

or more precisely, whether there are 3 or more outpatient visits for the month of last 

outpatient visit (Condition 2). We used the official records of cancer deaths to verify 

the above two conditions. 

In this part, the cancer incidence rates and cancer mortality rates derived from the 

analysis of NHIRD have been shown. The age-specific incidence cancer rates are 

shown in Figure 2. Since there were a large volume of data, we only selected the 

results of 2002, 2005, 2008, and 2011 for demonstration. As expected, men showed a 

higher incidence rate than women for all the age groups. To note, the incidence rate 

did not show big changes from 2002 to 2011 but only showed small increments 

between two consecutive years. However, still the increments did indicate potential 

longevity risk. Next, we applied stochastic models to the incidence rates.  

 

 

Figure 2. Taiwan age-specific cancer incidence rates (Estimated) 
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Since our goal is to design cancer insurance products, we computed the mortality 

rates for those who had cancer. These mortality rates were different from the official 

records where the cancer mortality rate is defined as the number of cancer deaths 

divided by all Taiwan residents. Moreover, since we used “no outpatient records for 

two consecutive years” (Condition 1) to determine if a patient is alive, we lost two 

years of data, i.e. could not determine the status of patients for 2010 and 2011. Thus, 

following the similar format as that in Figure 2, Figure 3 shows the age-specific 

mortality rates for cancer patients in 2002, 2005, 2008, and 2009. It seems that the 

mortality rate reduced slowly, and similar to those in Figure 2, the change in mortality 

rate between two consecutive years was not much.  

 

 

Figure 3. Taiwan age-specific cancer patients’ mortality rates (Estimated) 

 

Since the incidence rate increased slowly and the mortality rate reduce gradually, 

it is reasonable to expect that the number of Taiwan cancer patients (or the cancer 

prevalence rate) will increase. This is exactly the case in Taiwan and the number of 

Taiwan cancer patients increased about 30% from 2002 to 2011. Together with the 

population aging in Taiwan, the number of cancer patients will continue to increase in 
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the future. On the other hand, increasing incidence rate and decreasing mortality rate 

indicated a higher expenditure for cancer insurance, coinciding with the increasing 

loss ratio for cancer insurance in recent years. In the next section, we will detail the 

use stochastic models to explore the possibility of including longevity risk in cancer 

products.  

 

3. Methodology and Application 

Most of the stochastic models considered in the literature of mortality study can 

be categorized as the family of Generalised Age-Period-Cohort (GAPC) stochastic 

mortality models (Villegas et al., 2016). For instance, Age-Period-Cohort model 

(Cairns et al., 2009), the Lee-Carter (LC) model (Lee and Carter, 1992), the 

Renshaw-Haberman (RH) model (Renshaw and Haberman, 2003&2006), the 

Cairns-Blake-Dowd (CBD) model (Cairns et al., 2009), and Plat model (Plat, 2009) 

are some well-known examples.  

First, an introduction to the Gompertz model and some of the GAPC stochastic 

mortality models will be provided. Originally, the Gompertz model was for modeling 

the mortality rates of higher ages. It is believed that the force of mortality x at age x 

satisfies 

x

x BC ,       (1)  

where 0B and 1C are model parameters. Equation (1) can be converted to the form 

of central death rate xm by
x

x BCm  . The Gompertz model has been applied to 

situations such as fertility and morbidity. Additionally, Strehler and Mildvan (1960) 

used the Gompertz mode to fit cancer mortality rate.  
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If xtm denote the central death rate or incidence rate for a person aged x  at time 

t . The LC model assumes that  

txtxxxtm ,

)2()2()1()log(   ,     (2) 

with 
x

x
1)2( and 

t
t

0)2( , 
)(i

x are age related parameters ( 2,1i ), and
)2(

t

represents the time related parameter. Note that
)1(

x is the general mortality level, 

)2(

x is the decline in mortality at age x, and
)2(

t is usually a linear function in time. 

The term tx, denotes the deviation of the model and is assumed to be white noise, 

with 0 mean and relatively small variance.  

 The residuals after fitting the LC model are often not random (Debón et al., 

2008), and adding extra time or cohort component to the LC model is one of the 

possible modifications. The RH model can be treated as a version of LC model with 

an extra cohort component, 

                   
)3()3()2()2()1()l n ( xtxtxxxtm    ,                 (3) 

where ,0,1,0,1
,

)3()3()2()2(   

tx

xt

x

x

t

t

x

x  and the parameter
)(i

x denotes the 

average age-specific mortality, 
)2(

t represents the general mortality level, and
)3(

xt  

reflects the cohort-related effect.  

The CBD model was designed to model mortality rates of higher ages and to deal 

with the longevity risk in pensions and annuities. For the CBD model, it assumes that 

the mortality rates satisfy  

    logit
)2()2()1()1(

1
log)( txtx

xt

xt
xt

m

m
m  


 ,                (4) 
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where the parameters are 
)(i

x and 
)(i

t ( 2,1i ) denote the average age-specific 

mortality and the general mortality levels. If we assume 1)1( x and xxx )2( , then 

the model has a simple parametric form: 

logit )()( )2()1( xxm ttxt   .      (5) 

The Age-Period-Cohort (APC) model is a popular tool for modelling disease 

incidence and mortality in epidemiology. Heuristically speaking, if we consider the 

notion of Analysis of Variance, the LC model considers the effects of Age and 

AgePeriod (Interaction), while the APC model considers three main effects, Age, 

Period, and Cohort:  

xttxxtm  )ln( ,                      (6) 

where  
 c

c

xtc

c c 0,0   . 

Three criteria are used to evaluate the models: mean absolute percentage error 

(MAPE), Akaike Information Criteria (AIC), and Bayesian Information Criterion 

(BIC). The MAPE is defined as  





n

i i

i

Yn
MAPE

1

%100
1 

, 

where iY and i are the observed value and residual of observation i, .,,2,1 ni   

The AIC and BIC are defined as 

,2)log(2 kLAIC   

),log()log(2 nkLBIC   
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where L is the likelihood of the data, k is the number of parameters in the model, and 

n is the number of observations. A model with smaller AIC or BIC value is treated as 

a better model. 

For the following discussion, we have chosen four GAPC mortality models (LC, 

APC, RH, and CBD) and used the R package StMoMo to explore these models. There 

were two reasons for choosing these four GAPC models. First, the LC model 

generally has the best model fit for all ages among the GAPC family models. The RH 

and CBD models provide fine modifications to the LC model under certain conditions. 

The RH model is more appropriate with obvious cohort effects, while the CBD model 

is a widespread alternative to LC model for the elderly people. On the other hand, the 

APC model is a popular choice in modeling disease incidence and mortality, and it is 

easy to provide interpretation.  

 

Our previous studies showed that the other GAPC family models did not 

produce good fitting results. They either gave much larger fitting/prediction errors or 

showed no convergence during estimation. The goodness-of-fit of stochastic models 

can be verified by inspecting the residuals. If there are system errors in the residuals, 

then spatial patterns (such as hot spots) can be detected. Debón et al. (2008) found 

that there is spatial autocorrelation for using the LC model to fit mortality rates. 

However, in the present study, we did not find clusters or autocorrelation for using the 

LC model to fit the cancer data.  

We evaluated the Gompertz model and the above-mentioned four mortality 

models from the GAPC models, using the R package StMoMo, based on the cancer 

incidence and mortality rates. The age-specific rates for male were in the format of 

5-age group, except for the younger groups since their cancer incidence rate and the 

number of cancer patients for younger groups were very small. Therefore, the data 
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were divided into ages 0-14, 15-19, 20-24,, and 85-89. In addition, we also 

considered the model evaluation for the case of higher ages, viz. ages 50-54, 

55-59, …, and 85-89. 

For the Gompertz model, we used the weighted least squares to obtain the 

parameter estimates of B and C. As for the GAPC family models, we have only shown 

the results under the log-Poisson assumption because the estimation results were 

about the same as those of the log-Poisson and logit-Binomial assumptions. We do not 

recommend the estimation under the normal assumption since it would produce 

unstable results when the population sizes are small (populations smaller than 50,000, 

according to our experience). 

Next, we compared the model fits of Gompertz’s model and the GAPC family 

models. Table 3 shows the MAPE’s for fitting the incidence rates and mortality rates 

of cancer patients for males. The LC and APC models showed the smallest fitting 

errors. The MAPE’s of LC and APC models were very small, indicating that the trend 

of incidence and mortality rates were well captured. For higher ages, i.e. ages 50-89, 

the Gompertz and CBD models turned to be good alternatives to the LC and APC 

models, especially for the mortality rates. 

 

Table 3. MAPE’s of Cancer Patients Mortality and Incidence(Male)  

  Gompertz LC APC RH CBD 

Incidence Rates 
ages 0–89 47.8  2.4  2.8 45.4  50.1  

ages 50–89 16.1  1.6  2.0 55.8  15.6  

Mortality Rates 
ages 0–89 11.3  4.3  4.3 62.0  11.4  

ages 50–89 5.2  2.7  2.0 25.3  5.2  

 

We also considered the criteria of AIC and BIC to avoid over-parameterization in 

the models. Since the LC, APC, and CBD had the smallest MAPE’s, we have only 

shown the AIC and BIC values for these three models in Table 4, where smaller AIC 
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and BIC values are preferred. Since the number of parameters were about the same 

for these three models, the results of AIC and BIC were similar to those of MAPE. In 

general, the LC and APC models are preferred and the CBD model is also a possible 

choice for higher ages.   

 

Table 4. AIC and BIC for LC, APC and CBD models(Male)  

 
LC APC CBD 

AIC BIC AIC BIC AIC BIC 

Incidence Rates 
ages 0–89 1705 1828 1778 1926 33071 33132 

ages 50–89 954 1011 1012 1088 8191 8239 

Mortality Rates 
ages 0–89 2146 2296 2157 2348 3219 3315 

ages 50–89 1246 1322 1219 1328 1747 1823 

 

We also examined the differences between observed and estimated rates (or 

residuals) to double check the estimation results. Figure 4 shows the observed cancer 

incidence rates and the estimated rates for four GAPC family models, for the cases of 

Taiwan male in 2002, 2005, 2008, and 2011. Apparently, the fitting curves of LC and 

APC models almost overlapped with those of the observed values. The RH and CBD 

models seemed to produce overbiased estimates for the younger ages and sometimes 

overbiased estimates for the elderly as well. The results for mortality rates estimation 

were similar and thus the details are not shown.  
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Figure 4. Observed vs. estimated cancer incidence rates (Male) 

 

It seems that both the LC model and APC model are good candidates to model 

the cancer incidence and mortality rates. We should focus our discussions on the LC 

model, since we only need to consider the time-related parameter
)2(

t
 of LC model for 

prediction. Note that
)2(

t
 is often a linear function of time and we can derive rough 

estimates of annual increment/reduction in incidence/mortality rates. If bta
t

)2(  

then the annual increment/reduction rate at age x is b
x
)2( . Figure 5 shows the annual 

increment of cancer incidence (left panel) and the annual reduction of cancer 

mortality (right panel). Older ages showed the largest increment in cancer incidence 

and younger ages displayed the largest reduction in cancer mortality. 
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Figure 5. Annual increment/reduction of cancer data (LC Model) 

 

The changes in the incidence rates were positive which indicated an increasing 

trend, while the changes in the mortality rates were negative, thereby indicating a 

decreasing trend. There are double risks of insurers in cancer product. The first is that 

the increasing cancer incidence rate should enhance the benefit paid when the insured 

is diagnosed with cancer. The second risk is that improvement in cancer patients’ 

mortality rates would add medical benefits burden and annuity, which is similar to the 

longevity risk for annuity products. Note that, the annual reductions and increments 

are not a smooth function of age (due to smaller population sizes) and in practice, we 

can use graduation methods to obtain smoother values (e.g. Wang et al., 2016a). 
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visit benefit and the death benefit. Thus, the increasing incidence rate and the 

decreasing mortality rate of cancer patients are expected to worsen the loss ratio of 

cancer products. For simplicity, we considered two types of whole-life cancer 

products: the first is that a (lump-sum) benefit is paid when the insured was diagnosed 

with cancer for the first time; The other product is that the annual annuity benefit will 

be paid after the insured is diagnosed with cancer and still alive.   

The first type of cancer product is similar to the whole-life insurance products 

and the contract is terminated after the benefit is paid. We used the years 2002-2009 

as the base-line years and compared the differences in pure premium whether the 

increasing cancer incidence rates were considered or not. The insured ages for the 

cancer insurance products were 30 to 60, with a premium payment period of 20 years. 

Also, the highest attained age was 110 years old and the interest rate was 2.25%. 

Since the results for different base-line years are similar, we only show the case of 

2009 as a demonstration. Table 5 shows the pure premiums per $1,000 for the 

whole-life cancer products for males, where “cohort” and “period” indicate the cases 

with/without the increment in cancer incidence respectively.  

 

Table 5. Pure Premium of 20-Year Payment Whole-Life Cancer  

( Per $1,000, Interest Rate: 2.25%) 

Age Period Cohort 

30 10.58 17.66 

35 11.88 19.04 

40 13.27 20.47 

45 14.74 21.92 

50 16.31 23.44 

55 18.03 25.08 

60 19.98 27.03 
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Figure 6 shows the percentages of pure premium undercounts if the increment of 

cancer incidence rate is not considered. The differences in pure premium were very 

significant, especially for the younger ages, for all base-line years. This can be used as 

an evidence to explain why the loss ratios of cancer insurance products in Taiwan is 

increasing in recent years. Also, the differences in pure premium seem to be a 

decreasing function of time and the differences in 2002 are the largest. 

 

Figure 6. % Difference in pure premium whole-life cancer (LC Model) 

Note: Cohort effect means cancer growth rate of incidence is considered. 

 

The second type of cancer product is similar to the whole-life annuity product 

and the annuity is paid while the insured is alive, after diagnosed with cancer. Again, 

the year 2009 was used as the base-line year to evaluate the differences of pure 

premium if the reduction of cancer patient mortality rates is considered. The settings 

of age, interest rate, and highest attained age were the same as the first type. Table 6 

shows the detailed numbers of pure premiums per $1,000 for the whole-life annuity 

products. Figure 7 shows the percentage of pure premium undercount when the 

reduction of cancer mortality was not considered. Unlike in Figure 6, the differences 

Whole-life cancer (period vs. cohort)

age

G
ro

w
th

 R
a

te
s
 

30 35 40 45 50 55 60

0
.0

0
.2

0
.4

0
.6

0
.8

2002
2005
2008
2009



20 
 

in pure premium with respect to mortality reduction were not very significant and the 

younger ages were the largest.  

 

Table 6. Pure Premium of 20-Year Payment Whole-Life Annuity Cancer  

( Per $1,000, Interest Rate: 2.25%) 

Age Period Cohort 

30 1,048 1,074 

35 1,042 1,065 

40 1,038 1,059 

45 1,034 1,052 

50 1,029 1,041 

55 1,022 1,030 

60 1,016 1,020 

 

  

Figure 7. % Difference in pure premium whole-life annuity cancer (LC Model) 
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Using the databases from Taiwan’s National Health Insurance (NHI), we found that 

the incidence rates slightly increased and the mortality rates gradually decreased over 

the years in Taiwan. This was in accord with the increasing trend of the loss ratios for 

the cancer insurance products. This suggested that the longevity risk should be 

included in long-term health products. We also evaluated whether the frequently used 

mortality models can be employed to cope with the longevity risk or not. The LC and 

APC models were the top choices for modeling the cancer incidence and mortality 

rates. The CBD and Gompertz models were possible alternatives for the higher ages.  

Taiwan is not the only country with increasing loss ratios, many Asian countries 

have similar experiences for long-term health products. For example, the number of 

those diagnosed with cancer in South Korea increased annually by 2.9 percent 

between 1999 and 2007, catapulting the loss ratio to around 120 percent (Source: 

Korea Insurance Development Institute). Lack of relevant experience data and use of 

foreign experience rates are the main reasons of increasing loss ratio. Therefore, we 

used Taiwan’s population data (i.e. NHIRD) to acquire the cancer incidence and 

mortality rates. However, this was still not enough to meet our goal to design 

long-term cancer insurance products. To this end, the notion of longevity risk should 

be considered. We think that the influence of mortality improvement is bigger than 

that of the interest in insurance products, and this became more obvious when we 

looked at long-term and whole-life products. In fact, the mortality improvement is not 

always a plus to the insurers. In Taiwan, “whole-life” and “return principal” are the 

two common attributes in most life insurance policies, and we found that the 

decreasing mortality rates would cause an increase in the insurance premium (Yue and 

Huang, 2011).  

Using the stochastic models to capture the future trend is one of the possibilities 

for dealing the increasing loss ratios. However, there still remains potential risk, if the 
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changes of incidence and mortality rates are larger than expected. Natural hedge is 

one possible alternative, and we can bundle the long-term cancer insurance products 

with annuity products. Intuitively speaking, cancer patients often have shorter life 

expectancy and thus receive fewer payments in annuity. Another possibility is to 

transfer the financial burden of medical claim risk to the capital market, and the 

experience of the longevity bond can provide useful guidelines.  

Furthermore, moral hazards also needs to be considered in cancer insurance. As 

mentioned in the first section, private clinics or health exam centers can help people 

to check if they have cancers without showing the exam results in the medical records. 

This increases the possibilities of adverse selection. There are quite a lot of possible 

remedies, such as extending the waiting period, reducing the coverage for the first 

policy year and coverage of the actual expenditures only. For example, a Taiwan’s 

insurance company returns the premium paid to the insured persons if they are 

diagnosed with cancer in the first policy year, and returns 200% of the total premium 

paid if they are diagnosed with cancer in the second policy year.   

The issue of big data also appeared in this study. We would expect more data to 

be available in future for the insurance companies, and not restricted to their own 

experience data. The insurance companies need to invest more on the manpower, such 

as organizing big data teams and training data scientists, in order to analyze the big 

data. It is neither cost effective nor feasible to hire outsiders to handle the data. For 

example, in order to handle the NHI databases (e.g. HV and HV_CD), our big data 

team has been operating for more than 10 years. Analysis of big data is a process of 

knowledge accumulation and trial-and-error method. In this regard, we keep updating 

the standard operating procedure for handling the NHI data over the years.  

As for the stochastic models, we considered the GAPC family models in this 

study. Like in many previous studies, the LC and APC models showed better model 
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fits. It seemed that the RH model (i.e. cohort modification of the LC model) does not 

fit well. It can be a result of shorter data period (fewer than 15 years) which makes 

observation of the cohort effect difficult. For model development, we can also 

consider other models for cancer incidence and mortality rates. Possible candidates 

include the discount sequence method and its extension (Wang and Yue, 2011; Wang 

et al., 2016b) and spatial modification of LC model. For example, Debón et al. (2008) 

considered adding a term of autocorrelation when the residuals of LC model showed 

systematic errors. We can add clusters or other first degree moment (i.e. mean shift) to 

the LC model (Wang and Yue, 2013).  
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