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Abstract

Life insurance contracts typically possess various embedded options. In this paper, we
focus on common options with early exercise features such as paid-up options, resumption
options, surrender options and combinations of these. We investigate how the option val-
ues change under different parameters and exercise strategies. In contrast to the existing
literature, which has shown that the values of premium payment options are rather small
under a deterministic term structure, we demonstrate that the situation changes dramati-
cally whenever stochastic interest rates are introduced.

1 Introduction

Life insurance contracts are typically offered with various embedded options. In this paper, we
focus on premium payment options with early exercise features, which can be found in essentially
any life insurance contract with regular premium payments. A paid-up option allows policyhold-
ers to stop premium payments while the main contract continues with adjusted benefits. A
resumption option allows policyholders to resume payments after the paid-up option has been
exercised (again, benefits will be adjusted accordingly). With a surrender option, policyholders
can terminate their contract and receive a surrender amount before maturity. With a combined
paid-up and surrender option, policyholders may surrender their policy with or without previ-
ously exercising the paid-up option.

In the current low-interest rate environment, insurance companies are particularly struggling
with the high long-term interest guarantees which they previously provided to their policyhold-
ers. The situation for the insurer can be even more problematic, as policyholders tend to exercise
their surrender or paid-up options once the interest rate rebounds (cf. Feodoria and Förstemann
(2015)). Therefore, if options are not priced adequately and hence no proper risk management
has taken place, insurance companies may encounter severe difficulties (cf. the cases of Equitable
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Life in 2000 or The Hartford in 2009). In addition, current solvency regulation schemes such as
Solvency II or the Swiss Solvency Test require insurers to consider lapse risk and provide proper
risk management and equity capital for options provided to their customers. Proper models for
the valuation of premium payment options and the related risk assessment are thus essential for
life insurance companies and should be conducted with care.

Most of literature dealing with premium payment options centers on a single surrender option.
With the surrender option, an insurance policy is as Bermuda or American option. Hence,
the surrender option value can be calculated as the difference between American option and
European option (a policy without the surrender option). This valuation is conducted under
certain assumption on policyholders’ behaviors. One possible approach is the recursive binomial
tree discussed in Cox, Ross, and Rubinstein (1979) and applied by Bacinello (2003a), Bacinello
(2003b), and Bacinello (2005). First suggested by Longstaff and Schwartz (2001) for American
option pricing, Least squares Monte Carlo method (LSMC) is another approach, which has been
applied by Bacinello (2008) and Bacinello, Biffis, and Millossovich (2009). Andreatta and Cor-
radin (2003) compare these two approaches and conclude that these two methods are similarly
accurate, while LSMC can be better applied for high-dimensional derivative valuation. Bauer,
Bergmann, and Kiesel (2010) build a general model and compare these numerical valuation ap-
proaches. Again, LSMC was found to be superior because of its efficiency. The third approach,
as optimal stopping strategy, is proposed by Andersen (1999) and applied by Kling, Russ, and
Schmeiser (2006) and Schmeiser and Wagner (2011). Comparing this optimal stopping strategy
with LSMC, Douady (2002) contend that LSMC is slightly biased downwards. However, the
optimal stopping strategy is only feasible under one-dimension setup.

In addition to a single surrender option, Kling et al. (2006), Gatzert and Schmeiser (2008a), and
Schmeiser and Wagner (2011) value both single and combined premium options, i.e. a paid-up
option, a combined paid-up and resumption option, a surrender option, and a combiend paid-up
and surrender option, with geometric Brownian motion for assets and a deterministic interest
rate. They analyze these premium options based on a fair pricing concept (insurance contracts
with a net present value (NPV) of zero). Option values are derived as NPV of the contract
with premium payment options. In particular, if the options are exercised at their maximum
level, the provider may face severe risk (cf. Gatzert and Schmeiser (2008a)). However, as Kling
et al. (2006), Gatzert and Schmeiser (2008a), and Reuß, Ruß, and Wieland (2016) point out,
this strategy is not feasible from the policyholders’ point of view. Schmeiser and Wagner (2011)
value premium payment options with the optimal stopping strategy. In the case of participating
life insurance with cliquet-style option, Schmeiser and Wagner (2011) show that the value of
premium payment options is fairly small. Moreover, for a combined option, it is not possible to
exercise each option at its optimal level. Thus, a combined option values only little more than a
single option but far less than sum of the individual options.

The existing literature regarding combined option valuation assumes deterministic interest rate
whereas the empirical findings confirm that the interest rate changes strongly influence policy-
holders’ option exercising behaviors. (cf. Kuo, Tsai, and Chen (2003)). This paper therefore
values single and combined premium payment options with two stochastic risk sources (assets
and interest rates) under adjusted LSMC setup. We show the influence of stochastic interest
rates on the general premium payment is enormous. This aspect must be considered to prevent
underpricing of life insurance contracts. In addition, only risk-adequate pricing allows insurers
to provide adequate risk management measures such as equity capital to always ensure the pay-
ments to policyholders.
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The remainder of this paper is organized as follows: Section 2 introduces the general contract
framework from Schmeiser and Wagner (2011) and extends the setup by using the stochastic
Vasicek model (cf. Vasicek (1977)). Section 3 analyzes option values based on both a rational
and feasible exercise strategy and assuming options are maximally exercised. Section 4 provides
several numerical results. Section 5 discusses the economic implications of our findings and con-
cludes the paper.

2 The Model Framework

The basic contract includes two standard options: a guaranteed yearly interest rate (g) and a
surplus participation (with participation rate α). We then extend the basic contract with four
different premium payment options: a paid-up option with present value (PV ), ϑP ; a combined
paid-up and resumption option with PV, ϑPR; a surrender option with PV, ϑS ; and a combined
paid-up and surrender option with PV, ϑPS . These premium payment options are assumed to
only be exercised at the end of each year, given that the main basic contract is still in force (i.e.,
at the end of year t, policyholders must still be alive and the relevant options have not yet been
exercised). We assume the insurer faces no default risk and hence legitimate payments to the
policyholders can always be achieved by the insurer. In other words, the insurer can hedge out
all the risk from both the basic contract options and premium payment options.

2.1 The Basic Contract (Π)

We start with a basic life insurance endowment contract with a duration of T years and time
index t = 1...T . Let tpx be the probability that a policyholder aged x years survives the next t
years, while tqx (=1 − tpx) represents the probability of death over the next t years. Following
actuarial practice, we assume mortality risk is negligible. More precisely, it is assumed that
mortality risk is uncorrelated to financial risk sources and hence has a pure unsystematic nature.

Annual premium payments, Bt, are paid by the policyholder at the beginning of t if the policy-
holder is alive at the end of t− 1. Premium payments are constant in time, i.e., Bt = B. PV of
premium payments can be written as B

∑T−1
t=0 tpx(1+r)−t, where r is the technical discount rate.

Benefit payments provided to the policyholder include death benefits and survival benefits. If
the policyholder dies during year t, death benefits γ are payable at the end of year t. The death
benefits are constant and the PV can be formalized as γ

∑T−1
t=0 tpxqx+t(1 + r)−(t+1). Survival

benefits are paid out at T if the policyholder survives when the contract matures. The mini-
mum amount of the survival benefits (guaranteed survival benefit) provided to the policyholder
equals to death benefit amount, γ. The PV of the guaranteed survival benefit can be written as
γT px(1 + r)−T .

According to the actuarial equivalence principle, the PV of the premium payments and that of
the death and survival benefits should be identical. Hence, γ can be derived with a fixed pre-
mium payment amount B. In order to be on the safe side, we discount the premium and benefit
payments using the interest guarantee rate, g (cf. Linnemann (2003)). The relationship between
the premium payments and the benefits is shown via the following equation:
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B

T−1∑
t=0

tpx(1 + g)−t = γ(

T−1∑
t=0

tpxqx+t(1 + g)−(t+1) +T px(1 + g)−T ) (1)

Hence, γ is given by

γ =
B
∑T−1
t=0 tpx(1 + g)−t∑T−1

t=0 tpxqx+t(1 + g)−(t+1) +T px(1 + g)−T
(2)

Note that for the survival benefit, γ only represents the minimum benefit given by the guaranteed
interest rate. The actual amount of the survival benefit depends on the policy’s accumulated
assets, AT , including both the guarantee option and a surplus participation. To calculate this
policy’s accumulated asset, At, we separate the annual premium payment, B, into two parts,
denoted by BRt and BAt . BRt as qx+t−1 max(γ − At−1, 0) is used to pay the difference between
the death benefits and the policy’s asset accumulated by the end of the previous year (At−1).
The remainder, BAt serves as the savings premium and becomes part of the policy’s accumulated
asset account for the coming year, t:

B = BRt +BAt

BAt = B − qx+t−1 max(γ −At−1, 0)
(3)

At the beginning of t, the policy’s accumulated asset contains two parts: the accumulated amount
at the end of the previous year, At−1, and the annual savings premium, BAt , collected at the
beginning of t. With both the guarantee and surplus options, the accumulated assets earn an
annual return at the guaranteed interest rate or an annual surplus rate, whichever is greater. The
annual surplus rate is a fraction, α, of the annual insurer’s investment result at t, i.e., St/St−1−1.
Hence, α serves as a participation rate. The development of the policy’s assets over time can be
formally written as

At = (At−1 + t−1pxB
A
t )(max(g, α(St/St−1 − 1)) + 1) (4)

with A0 = 0

The policy’s asset is subject to investment risk, which includes two risk sources, the interest rate
risk and the asset risk. The interest rate, r, evolves according to the one-factor Vasicek model
(cf. Vasicek (1977)):

drt = κ(θ − rt)dt+ σIdZ
P (5)
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Here, ZP is a Wiener process on a probability space (Ω, φ,P). To capture the interest rate risk, σI
determines how much randomness of Z is acquired in the model. κ and θ are positive constants
representing the speed of reversion and the long-term mean, respectively. A constant market
price of risk, λ, is introduced to transfer the model into the risk-neutral probability space. If
the market participants are risk averse, we have λ < 0. Under the risk-neutral measure, Q, the
interest spot rate process given in equation (5) changes to

drt = κ(θ − σIλ

κ
− rt)dt+ σIdZ

Q, (6)

where ZQ denotes the Wiener process under the risk-neutral measure, Q. The solution of the
Vasicek model for one period return can be derived as

rt = e(−κ∆t) + (θ − σIλ

κ
)(1− e−κ∆t) +

σI√
2κ

√
1− e−2κ∆tZQ

t (7)

For asset risk, we assume the policy’s asset follows a geometric Brownian motion (µ and σs) with
stochastic interest rate derived via equation (7). For the geometric Brownian motion, we have:

d(lnSt) = (µ− σ2
s/2)t+ σsdW

Under the risk-neutral measure, Q, and combined with a stochastic interest rate, the determin-
istic drift for the asset risk changes to the stochastic spot rate and hence leads to

dSt =rtStdt+ σsStdW
Q

ln
St
St−1

=rt − σs/2 + σs(ρZ
Q +

√
1− ρ2WQ)

(8)

In this context, WQ represents a second Wiener process under the risk-neutral measure Q. σs
captures the investment risk, which relates to both the asset risk and the interest risk. ρ indicates
the correlation coefficient between the interest rate risk and the asset risk.

The contract value at t, denoted by Πt, is the difference between two cash flows valued at t: the
benefit paid to the policyholder and the premium paid by the policyholder to the insurer. NPV
of the contract at t = 0 is the difference between the PV of these two cash flows:

Π0 = EQ[(γ

T−1∑
t=0

tpxqx+tδt+1 +AT δT −B
T−1∑
t=0

tpxδt)] (9)
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δt = Πt
0((1 + rt))

(−1) is a discounting factor under the risk-neutral measure at the end of period
t back to the beginning of the contract. We call a contract fair whenever its NPV is zero (Π0 = 0).

For different parameters, we aim to derive their respective participation rate, α (with 0 ≤ α ≤ 1),
that leads to a fair condition for policyholders and equity holders.

In what follows, the value of premium payment options is derived by calculating the PV differ-
ence between the basic contract (with the investment guarantee and surplus option only) and
the basic contract plus premium payment options. The premium payment options considered in
this paper are: paid-up option, combined paid-up and resumption option, surrender option, and
combined paid-up and surrender option.

g guaranteed interest rate

rt stochastic annual spot rate for year t

δt stochastic discount factor for year t back to year 0

α participation rate ( 0 ≤ α ≤ 1)

Πt basic contract value at year t

Bt constant premium payment, paid at the beginning of year t

(Bt = B = BAt +BRt )

BRt term life premium

BAt saving premium

γ constant death benefit paid at the end of the year

At policy’s accumulated asset at year t

PV present value (at year 0)

ϑ present value of the option

Table 1: Summary of basic contract notation

2.2 Contract with a Paid-up Option (ϑPτ )

In this section, we extend the basic contract form with an additional paid-up option. Once the
paid-up option is exercised, policyholders stop premium payments while the contract continues
with adjusted benefits. Note that, in this scenario, policyholders cannot resume payments once
the paid-up option has been exercised.

In what follows, γPτ denotes the adjusted benefits when the paid-up option is exercised at t = τ ,
τ = 1...T . When τ = T , the option has expired and thus its value is zero. The benefit, γPτ ,
depends on the accumulated assets at τ and the survival probabilities of the insured with age
x+ τ . In formal terms, this gives:
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γPτ =
Aτ∑T−1

t=τ t−τpx+τqx+t(1 + g)−(t−τ+1) +T−τ px+τ (1 + g)−(T−τ)
(10)

The adjusted final survival benefit, APT,τ , is based on the sum of APt−1,τ and the savings premium,

BAt = 0−BRt = −qx+t−1 max(γ −At−1, 0):

APt,τ = (APt−1,τ − qx+t−1 max(γ −APt−1,τ , 0))(max(g, α(St/St−1 − 1)) + 1), (11)

with APτ,τ = Aτ .

Using risk-neutral valuation technique, NPV of the contract, ΠP0,τ , is thus given by:

ΠP0,τ = EQ[γ

τ−1∑
t=0

tpxqx+tδt+1 + γPτ

T−1∑
t=τ

tpxqx+tδt +APT,τδT −B
τ−1∑
t=0

tpxδt] (12)

The paid-up option value, ϑPτ , can finally be determined by the difference between NPVs of the
contracts with and without a paid-up option:

ϑPτ = ΠP0,τ −Π0

= EQ[(γPτ − γ)

T−1∑
t=τ

tpxqx+tδt+1 + (APT,τ −AT )δT +B

T∑
t=τ

tpxδt]
(13)

2.3 Contract with a Combined Paid-up and Resumption Option (ϑPRτ,ν )

In this section, we add a resumption option to the basic contract with a paid-up option alone
(described in the previous section). The resumption option allows policyholders to resume pre-
mium payments after the paid-up option is exercised. Let γPRτ,ν denote the adjusted benefits when
exercising the paid-up option at τ and exercising the resumption option at ν, with ν = τ + 1...T
for τ < T and ν = T when τ = T . For ν = T , the resumption option has expired without being
exercised. The adjusted benefits, γPRτ,ν , are thus given by:

γPRτ,ν =
APν,τ +B

∑T−1
t=ν t−νpx+ν(1 + g)−(t−ν)∑T−1

t=ν t−νpx+νqx+t(1 + g)−(t−ν+1) +T−ν px+ν(1 + g)−(T−ν)
(14)

After exercising the resumption option, the policyholder resumes premium payments, B, into
the contract. Hence, the accumulated assets, APRT,ν,τ , are given by

7



APRt,ν,τ = (APRt−1,ν,τ +t−1 pxB
A
t )(max(g, α(St/St−1 − 1)) + 1)

BAt = B −BRt = B − qx+t−1 max(γ −At−1, 0),
(15)

with APRν,ν,τ = APν,τ .

NPV of the contract with paid-up option exercised at τ and resumed at ν can be formalized as

ΠPR0,ν,τ =EQ[γ

τ−1∑
t=0

tpxqx+tδt+1 + γP
ν−1∑
t=τ

tpxqx+tδt+1+

γPR
T−1∑
t=ν

tpxqx+tδt+1 +APRT,ν,τδT −B
τ−1∑
t=0

tpxδt −B
T−1∑
t=ν

tpxδt]

(16)

The value of the combined paid-up and resumption option is given by the difference between
NPVs of the contract with the combined option and the basic contract without the combined
option:

ϑPRτ,ν = ΠPR0,ν,τ −Π0

= EQ[(γP − γ)

ν−1∑
t=τ

tpxqx+tδt+1

+ (γPR − γ)

T−1∑
t=ν

tpxqx+tδt+1 + (APRT,ν,τ −AT )δT +B

ν−1∑
t=τ

tpxδt]

(17)

2.4 Contract with a Surrender Option (ϑSθ )

A surrender option allows the policyholder to terminate the policy and receive a surrender value
before the agreed end of maturity. This option can be exercised at a specific point in time, θ,
with θ = 1...T . If θ = T , the surrender option has expired and thus its value is zero. The
surrender value is assumed to equal the policy’s accumulated assets at θ, denoted by Aθ.

The PV of the basic contract including a surrender option exercised at θ is denoted by ΠS0,θ and
can be calculated as:

ΠS0,θ = EQ[γ

θ−1∑
t=0

tpxqx+tδt+1 +Aθδθ −B
θ−1∑
t=0

tpxδt] (18)
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The surrender option value, ϑSθ , is the difference between NPVs of the basic contract with and
without the surrender option:

ϑSθ = ΠS0,θ −Π0

= EQ[−γ
T∑
t=θ

tpxqx+tδt+1 +Aθδθ −AT δT +B

T∑
t=θ

tpxδt]
(19)

2.5 Contract with a Combined Paid-up and Surrender Option (ϑPSθ,τ )

Typical life insurance endowment policies allow policyholders to make the contracts paid-up and
later surrender the policies before they mature. Hence, in this section we introduce a combined
paid-up and surrender option. Besides exercising each option individually, policyholders may
also exercise the paid-up option first and surrender the contract later (but not vice versa). When
exercising the surrender option at θ after exercising the paid-up option at τ , policyholders receive
the surrender value as the accumulated asset amount APθ,τ with τ = 0...T − 1 and θ = τ + 1...T .
If τ = 0 or θ = T , the respective option has not been exercised. NPV of the contract with both
paid-up and surrender options is thus given by

ΠPS0,θ,τ =



EQ[γ
∑τ−1
t=0 tpxqx+tδt+1 + γP

∑θ−1
t=τ tpxqx+tδt+1+

APθ,τδθ −B
∑τ−1
t=0 tpxδt], T > θ > τ

if exercising both paid-up and surrender options

ΠP0,τ , if exercising paid-up option only(θ = T )

ΠS0,θ, if exercising surrender option only(τ = 0)

(20)

The value of the combined paid-up and surrender option can be written as:

ϑPSθ,τ = ΠPS0,θ,τ −Π0 (21)

Note that as the PVs of the considered options, ϑ, equal to the difference between PV of basic
contract with and without the option, ϑ is option price policyholders should pay at t = 0 so that
the contract is fair and NPV is zero.

3 Valuation of Premium Payment Options

In life insurance contracts, the assumed policyholder’s exercise strategy is central when valuing
embedded premium payment options. We begin by calculating the upper limit of the premium
payment options for any possible exercise strategy. Since such a valuation uses information which
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is not accessible in a neoclassical finance setting and hence not a feasible strategy for policyhold-
ers, we use the LSMC (least-squares Monte Carlo) strategy as an approximation of an optimal
exercise approach and as the basis for the value of the premium payment options.

3.1 Deriving an Upper Limit (UPϑ)

Kling et al. (2006), Gatzert and Schmeiser (2008a), and Schmeiser and Wagner (2011) discuss
calculating an upper limit for premium payment options and its economical interpretation in
detail. Assuming policyholders know future developments, the premium payment option would
be exercised at its maximum value for the whole contract period. In formal terms, we have:

UPϑ =
1

N

N∑
n=1

(max(nϑt, 0)) t = 1...T − 1, (22)

where nϑt denotes the different option values if exercised at t for the nth simulation path, and
max(nϑt, 0) denotes the maximum amount during the whole contract period for the nth path.
Policyholders do not exercise these options if their value is negative for the whole contract
period. The upper limit can also be referred to as the PV of the option given perfect informa-
tion. Although perfect information is clearly not given in practice, the concept still provides
useful insight as it shows the upper bound of the option – or maximum loss from the insurer’s
viewpoint – under any conceivable exercise strategy if no parameter or model risk can take place.

3.2 Option Valuation via the Least-squares Monte Carlo Strategy (LSMCϑ)

The LSMC method was first presented by Longstaff and Schwartz (2001) to price American
options. It has been used to value the surrender option and similar premium payment options
in life insurance contracts (cf. Andreatta and Corradin (2003), Nordahl (2008), and summarized
by Bauer et al. (2010)). The LSMC approach aims to find an optimal exercise point using only
accessible information. For different points in time, the method compares between two values:
the exercise and continuous values. The exercise value is the value if the option is exercised, while
the continuous value is the value if the policyholder does not exercise the option and the contract
continues. Following this strategy, policyholders exercise an option if its exercise value is larger
than the continuous value. The original strategy determines the exercise value as a defined and
deterministic cash flow when exercising the option. The continuous value is the PV of the future
cash flows if the options are not exercised immediately. However, except for the surrender option,
exercising an option does not always cause a defined immediate cash flow. We therefore make an
adjustment to the original approach and define both the exercise and continuous values as the
PV of future cash flows. For the special case of surrender options, we compare both the adjusted
LSMC and the original method proposed by Longstaff and Schwartz (2001) in the Appendix.
For our numerical examples, the difference between the results of these two methods turns out
to be negligible.

The original algorithm contains two approximations to converge the maximal option value (cf.
Clément, Lamberton, and Protter (2002)). First, the continuous value at t denoted by tC(ϑ) is
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approximated by the conditional combination of finite functions. The second approximation de-
termines the value function via a least squares regression. We add a further two approximations
for the exercise value, ϑt, the option value when the option is immediately exercised at t. Note
that the option values are discounted for convenient comparison back to the beginning of the
contract.

tC(ϑ) is approximated by tC(ϑ) = EQ[tC(ϑ)|Ft] ∼= f(x1
t ...x

J
t ), the conditional expected value

under the risk-neutral distribution at year t. x1
t ...x

J
t are J relevant variables (as all the possible

information accessible at t). In our model, xj with j = 1...3 includes the interest rate, rt, the
investment rate of return, St/St−1, and the adjusted benefit, γt at t.

The first approximation is given by:

tC(ϑ) = EQ[tC(ϑ)|Ft] ∼= f(x1
t ...x

J
t ) (23)

The second approximation includes K sets of basis functions to approximate f(x1
t ...x

J
t ) with αk

as constant coefficients. In our model, υk is a set of Laguerre polynomials. We set K = 4.2

tC(ϑ) ∼= f(x1
t ...x

J
t ) ∼=

K∑
k=0

αkt υ
k(x1

t ...x
J
t ) (24)

The coefficients αk are unknown so far. Using Monte Carlo simulation with n = 1...N paths, we
estimate αkt via least squares linear regression. In Longstaff and Schwartz (2001), these estima-
tors are based solely on in-the-money paths to reduce computation effort. However, in our case,
all paths should be considered since we are not focusing on standard put options (cf. Andreatta
and Corradin (2003)). The estimator for αkt is provided by

α̂kt = argmin{
N∑
n=1

[nt C(ϑ)−
K∑
k=0

αkt υ
k(nx1

t ...
nxJt ]} (25)

With α̂kt , we can calculate:

n
t Ĉ(ϑ) =

K∑
k=0

α̂kt υ
k(nx1

t ...
nxJt ) (26)

As explained above, the option value at the time when the option is exercised is not known until
maturity (t = T ). Therefore, we introduce other approximations to calculate ϑt via EQ[ϑt|Ft],
the conditional expected discounted option value for a Q measure exercised immediately at t:

2When taking different values for K, our numerical results stabilize after K = 4.
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ϑt =EQ[ϑt|Ft] ∼= s(x1
t ...x

J
t ) ∼=

K∑
k=0

α′kt υ
k(x1

t ...x
J
t )

α̂′kt =argmin{
N∑
n=1

[nϑt −
K∑
k=0

α′kt υ
k(nx1

t ...
nxJt ]}

nϑ̂t =

K∑
k=0

α̂′kt υ
k(nx1

t ...
nxJt )

(27)

Single Premium Payment Option Case (Paid-up Option Only / Surrender Option
Only)

We aim to find an optimal exercise point, nt∗, that maximizes the option value in each path, n,
by using accessible information. At the end of each year, policyholders decide whether to exercise
the option or not. The option should be exercised if the exercise value exceeds the continuous
value.

The simulation procedure can be formally described as follows. For the Monte Carlo path, n,
with n = 1...N :

1. At T , assume all nt∗ = T . The option value is zero as the contract matures without exercising
the option. The optimal option value is given by nϑnt∗ = nϑT = 0.

2. One year before (at T − 1), the continuous value is set at zero:

n
T−1C(ϑ) = nϑnt∗ = ϑT = 0

Policyholders decide at t = T −1 whether to exercise the option. If nϑT−1 is positive (and hence
exceeds the continuous value, which is zero) the option should be exercised and the optimal
exercise point becomes nt∗ = T − 1. Otherwise, the contract continues and nt∗ = T . In formal
terms, we have:

nt∗ = T − 1, if nϑT−1 >
n
T−1C(ϑ) = 0. Otherwise, nt∗ remains T .

Based on equation (27), we approximate nϑT−1 by nϑ̂T−1:

nϑ̂T−1 =

K∑
k=0

α̂′kT−2υ
k(nx1

T−1...
nxJT−1)

3. With the help of equation (24) and (25), we find α̂k at T − 2 to estimate n
t C(ϑ).
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n
T−2C(ϑ) = nϑnt∗

α̂kT−2 = argmin{
N∑
n=1

[nT−2C(ϑ)−
K∑
k=0

αkT−2υ
k(nx1

t ...
nxJt ]}

n
T−2Ĉ(ϑ) =

K∑
k=0

α̂kT−2υ
k(nx1

t ...
nxJt )

(28)

Again for T − 2, if nϑ̂T−2 >
n
T−2Ĉ(ϑ), nt∗ = T − 2. Otherwise, nt∗ remains unchanged.

Note that for equation (28), nT−2C(ϑ) = nϑnt∗ instead of nϑ̂nt∗ since the latter may lead to biases
when calculating the option value (cf. Longstaff and Schwartz (2001)).

4. With the same approach under the backwards algorithm, for t = T − 3...1, we have:

(1) n
t C(ϑ) = ϑnt∗

(2) n
t Ĉ(ϑ) =

∑K
k=0 α̂

k
t υ

k(nx1
t ...

nxJt ), with α̂kt = argmin{
∑N
n=1[nt C(ϑ)−

∑K
k=0 α

k
t υ

k(nx1
t ...

nxJt )]}

n
t ϑ̂ =

∑K
k=0 α̂

′k
t−1υ

k(nx1
t ...

nxJt ), with α̂′kt = argmin{
∑N
n=1[nt ϑ−

∑K
k=0 α

′k
t υ

k(nx1
t ...

nxJt )]}

(3) If nϑ̂t >
n
t Ĉ(ϑ), nt∗ = t. Otherwise, nt∗ remains unchanged.

5. With the algorithm above, the optimal option value equals the average of each path option
value exercised at its respective point, nt∗:

LSMCϑ =
1

N

N∑
n=1

(nϑnt∗)

Double Premium Payment Option Case

The double premium payment option case includes the combined paid-up and resumption option
and combined paid-up and surrender option. We begin with the first option by using a single
option exercise strategy described in the previous section. Conditional on the optimal exercise
point for the first option, we add the second option. This method ensures the double payment
option never has less value than the individual option.

Combined Paid-up and Resumption Option

The combined paid-up and resumption option, ϑPRt,s is a double option with two exercise points,
t and s, where s > t. With the single-option method, we first determine the optimal exercise
point, nt∗, that maximizes the paid-up option value, nϑPnt∗ , for the path n. If the optimal exercise
point is T , the optimal strategy is not to exercise the paid-up option. In this case, we set nt∗ = 0.

13



Second, we find the resumption exercise point, ns∗, to maximize the resumption option value.
This option value, exercised at s, is given by ϑRt∗,s = ϑPRt∗,s − ϑPt∗ .

For the resumption exercise point, ns∗, we have:

1. For nt∗ = 0, the combination option has expired and has a value of 0. In this case, we set
ns∗ = T .

2. For nt∗ > 0, the paid-up option has been exercised before maturity. We set ns∗ = T as pay-
ment will not resume until maturity. Hence, in this case the resumption option has a value of zero:

nϑRt∗,T = nϑPRnt∗,T − nϑPnt∗ = 0

3. At T −1 and for T −1 >n t∗ > 0, the paid-up option has been exercised. Policyholders decide
whether to resume the payment at s = T − 1. The resumption option is exercised if the exercise
value is positive (note that the continuous value n

T−1C(ϑ) = nϑRnt∗,T is zero).

nϑ̂Rt∗,T−1 is an estimator for the exercise value, nϑRt∗,T−1, at T − 1 based on the least squares
linear regression presented in equation (27).

If nϑ̂Rnt∗,T−1 >
n
T−1C(ϑ) = 0, then we set ns∗ = T − 1; otherwise, ns∗ remains the same.

4. With the same approach and using the backwards algorithm, for s = T − 2...2 we set ns∗ = s
if nϑ̂Rt∗,s >

n
s Ĉ(ϑ) and nt∗ < s.

ϑ̂Rt∗,s and n
s Ĉ(ϑ) are two estimates for ϑRt∗,s and n

sC(ϑ) = nϑRnt∗,ns∗ based on equations (24) to (27).

5. The optimal value of this combined paid-up and resumption option can be derived as follows:

LSMCϑPR =
1

N

N∑
n=1

(nϑPRnt∗,ns∗)

Combined Paid-up and Surrender Option

The main difference between the combined paid-up and resumption option and the combined
paid-up and surrender option is that the resumption option can only be exercised if the paid-up
option is exercised first, i.e., ϑPRt,s , t < s. However, policyholders can exercise the surrender
option independently, even if the paid-up option has not yet been exercised. In formal terms, we
have:

ϑPSt,s = ϑSs · 1t=0 + (ϑPt + ϑS′t,s) · 1T≥s>t>0 (29)

with ϑS′t,s = ϑPSt,s − ϑPt for T ≥ s > t > 0.
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First, the combined paid-up and surrender option is treated as two independent options. We
begin by finding the optimal exercise point for one of these two options:

1. With nt∗ = 0 and ns∗ = T , both the paid-up and surrender option values are zero.

2. At t = T − 1, the continuous value equals zero: nT−1C(ϑ) = 0.

The option value is nϑ̂PSnt∗,ns∗ = max(nT−1C(ϑ), nϑ̂PT−1,
n ϑ̂ST−1). nϑ̂Pt and nϑ̂Ss are two estimators

of nϑPt and nϑSs .

We consider three scenarios:

(1) nt∗ = T − 1, ns∗ = T if max(nT−1C(ϑ),n ϑ̂PT−1,
n ϑ̂ST−1) = nϑ̂PT−1. The best strategy is to

exercise the paid-up option.

(2) nt∗ = 0, ns∗ = T − 1 if max(nT−1C(ϑ),n ϑ̂PT−1,
n ϑ̂ST−1) = nϑ̂ST−1. Hence, the best strategy is

to exercise the surrender option.

(3) nt∗ = T , ns∗ = T if max(nT−1C(ϑ),n ϑ̂PT−1,
n ϑ̂ST−1) = n

T−1C(ϑ) = 0. In this case, policyhold-
ers should keep the two options, and the combined option value thus equals the continuous value.

3. With the backward algorithm and t = T − 2...1, we have:

(1) nt C(ϑ) = nϑnt∗,ns∗

(2) nt∗ = t, ns∗ = T , if max(nϑ̂Pt ,
n ϑ̂St ,

n
t Ĉ(ϑ)) = nϑ̂Pt .

(3) nt∗ = 0, ns∗ = t, if max(nϑ̂Pt ,
n ϑ̂St ,

n
t Ĉ(ϑ)) = nϑ̂St .

(4) nt∗, ns∗ remain the same, if max(nϑ̂Pt ,
n ϑ̂St ,

n
t Ĉ(ϑ)) = n

t Ĉ(ϑ).

nϑ̂Pt ,
n ϑ̂St ,

n
t Ĉ(ϑ) are estimators for nϑPt ,

n ϑSt ,
n
t C(ϑ).

4. nt∗ = 0 means the best strategy is either to exercise the surrender option only (ns∗ < T ) or
to hold the original contract until maturity (ns∗ = T ). If nt∗ > 0, the optimal strategy is to
exercise the paid-up option at nt∗. Given nt∗ > 0, we then derive the second optimal exercise
point, ns∗, to maximize the surrender option value, nϑS′nt∗,ns = nϑPSnt∗,ns − nϑPnt∗ . The method
is similar to that used for the combined paid-up and resumption option, and has the following
three steps:

(1) For nt∗ > 0, given that the first option has been exercised, set ns∗ = T , i.e., the surrender
option value is set at zero.

(2) At T − 1, the continuous conditional value equals zero:

n
T−1C(ϑ) = nϑS′nt∗,ns∗ = nϑPSt∗,T − nϑPt∗ = 0

If the first option has already been exercised (T −1 >n t∗ > 0), the policyholder decides whether
to exercise the second option at ns∗ = T − 1. The second option should be exercised if its value
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is positive. In formal terms, we have:

If nϑ̂S′nt∗,T−1 >
n
T−1 C(ϑ) = 0, ns∗ = T − 1.

(3) Based on the same approach using the backward algorithm for s = T −2...2, we approximate
nϑ̂S′nt∗,s and n

t Ĉ(ϑ) for nϑS′nt∗,s and n
t C(ϑ) = nϑS′nt∗,ns∗ . For nt∗ < s, if nϑ̂S′nt∗,s >

n
t Ĉ(ϑ),

ns∗ = s. Otherwise, ns∗ remains unchanged.

The PV of the simulated combined paid-up and surrender option is described as:

LSMCϑPS =
1

N

N∑
n=1

(nϑPSnt∗,ns∗)

with nϑPRnt∗,ns∗ determined by equation (29).

4 Numerical Results

This section presents key results of our numerical analysis for discussion. In particular, we focus
on the influence of the interest rate volatility, σI . Unless stated otherwise, the numerical results
are gathered using a Monte Carlo simulation with N = 104. In the Appendix, we show that the
results stabilize when N reaches 104.

4.1 Basic Contract

We consider a basic contract with the following parameters: A 30-year-old female policyholder
enters into a participating 10-year life insurance contract.3 The premium per annum is 1,200
currency units and the yearly interest rate guaranteed is set to 3%. The investment return rate,
St/St−1 − 1, combines both the spot interest and the asset process as laid down in equation
(8) using the risk-neutral measure, Q. The asset volatility is fixed to σs = 0.2. The correlation
between the asset and interest rate risk is ρ = 0.05. Under the Vasicek model, to obtain r, we
use the parameters κ = 8%, r0 = 4%, θ = 4%, and λ = 0. Based on these assumptions and using
equation (2), the death benefit is 14,089 currency units. Table 2 summarizes the initial dataset.

3Mortality probabilities are for a 30-year-old US woman in 1994 based on the data from HMD, the Human
Mortality Database.(??)
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B constant premium 1200

γ death benefit 14089

x initial age 30

T time to maturity 10

κ interest reversion speed 8%

σs asset volatility 20%

ρ correlation 5%

g guarantee rate 3%

r0 initial interest rate 4%

θ long term interest mean 4%

λ market price of risk 0%

Table 2: Parameter table for the base case
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Figure 1: Relationship between participation rate (α) and interest rate volatility (σI) for different values of long-term
interest mean (θ), time to maturity (T ), and market price of risk (λ)

Figure 1 shows the relationship between the participation rate, α, and interest rate volatility,
σI , under different conditions. The participation rate, α, is derived such that the contract is
fair at t = 0 (cf. Equation (9)). Figure 1(a) shows a clear trend: the higher σI is, the lower α
gets. When σI increases – for the same contract with the same interest rate guarantee – insurers
face higher risk and thus must lower the participation rate to ensure a risk-adequate return for
shareholders. In addition, the curves with different values of θ move in parallel. For all σI from 0
to 2%, the model supports the same conclusion as drawn in Schmeiser and Wagner (2011): higher
interest rates lead to a higher policyholder participation rate, α, under fair pricing condition.

In Figure 1(b), α decreases when the time to maturity of the contract, T , is set to 20 years.
Insurers face higher risk as T increases. Thus, in order to achieve risk-adequate returns for
shareholders, the participation rate, α, must be reduced. When σI increases to more than 1.5%
for T = 20, there is no α with 0 ≤ α ≤ 1 that satisfies the fairness conditions introduced in
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equation (9).

When λ = 0, we assume a risk-neutral market and hence no risk shift occurs when moving from
the empirical to the risk-neutral measure. Whenever λ < 0, market participants are assumed to
be risk averse. In this case, policyholders demand a higher participation rate, α, and/or a higher
investment guarantee, g, whenever σI increases. Figure 1(c) shows that when λ < 0, a larger α
is required compared to the case λ = 0.

4.2 Premium Payment Option Value

In the following, we discuss the results of the four different premium payment options (i.e., a
paid-up option, a combined paid-up and resumption option, a surrender option, and a combined
paid-up and surrender option). The main focus is the option value ϑ, the usage ratio, and the
value/premium ratio (V/P ).

An option’s value, ϑ, is defined as the difference between the PV of the contract with and without
the premium payment option (equations (13), (17), (19), and (21)). In a Monte Carlo simula-
tion, for certain paths, n, the option value may be negative for the whole contract period. When
calculating the upper limit or PV of perfect information, the best strategy for these paths is not
to exercise the options at all. Therefore, the usage ratio with the upper limit perspective shows,
for the entire simulation, how many paths have a positive option value during the contract pe-
riod and hence for how many paths the premium payment option should be exercised before the
contract matures. In the case of LSMC, the usage ratio show how many paths have an optimal
exercise point nt∗ < T .

The value/premium ratio (V/P ) compares the option value and PV of the premium payments,
if the premium payment options are exercised. In formal terms, we have:

V/P =

∑N
n=1

nϑ∑N
n=1

nPV Premium
(30)

with

a) nPV Premium = B
∑nt∗

t=0 tpx(1 + nrt)
−t for the paid-up option, the surrender option, and the

combined paid-up and surrender option, for which the premium payment stops at nt∗

b) nPV Premium = B
∑nt∗

t=0 tpx(1 + nrt)
−t +B

∑T−1
t=ns∗ tpx(1 + nrt)

−t for the combined paid-up
and resumption option, for which the premium stops at nt∗ but resumes at ns∗

Paid-up Option

Figure 2 demonstrates the results for the basic contract with a paid-up option only. In Figure
2(a) with σI = 0 (deterministic term structure), the upper limit exhibits a similar structure to
that presented in Schmeiser and Wagner (2011): A higher spot rate, θ, leads to a higher upper
limit for the paid-up option. However, this interest-rate effect decreases as σI increases.
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If σI = 0, LSMC may not be an efficient optimal strategy as its option values are close to zero
for all three different θ. As σI increases, LSMC becomes a better approach for approximating
an optimal exercise strategy. As σI increases, the value of the paid-up option under the LSMC
also increases. However, the difference in value among various θ is small.

From Figure 2(c), as σI increases, V/P increases from 0% to 5.8%. The V/P ratio, based on the
upper limit approach, increases even faster and reaches 11.8%.
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Figure 2: Paid-up option results for different σi

Combined Paid-up and Resumption Option

From Figure 3, we see a similar structure as that found for the paid-up option alone. The value
of the combined paid-up and resumption option increases with increasing σI . The influence of
changes in the interest rate, θ, on the upper limit decreases as σI increases.

The resumption option in Figure 4(a) is derived as the difference between the combined paid-
up and resumption option and the paid-up option alone. We find the resumption option for
the upper limit has a lower value than the option value following the LSMC approach when σI
is large. Using the LSMC method, the resumption option value increases while σI increases.
Hence, with the resumption option, the option value derived using the optimal strategy under
LSMC moves closer to the PV given perfect information. However, for both the LSMC and
perfect-information cases, the V/P ratio of this combination option is lower than that for the
paid-up option alone. When the resumption option is exercised, the premium payment resumes.
As the extra resumption option has limited value compared to the resumed premium payments,
the V/P ratio for this combined option actually decreases.

Figure 4(b) demonstrates and compares the usage ratio of the combined options. For the LSMC
method, the usage ratio of the paid-up only option and that of the combined option are exactly
the same as the LSMC method considering the paid-up option alone. From Figure 4(c), using
the LSMC approach in cases where the paid-up option has been exercised, the resumption option
can be used to adjust to future developments, which cannot be predicted at the time of exercising
the paid-up option. For the upper limit case, policyholders use the resumption option less often
as perfect information is assumed.
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Figure 3: Combined paid-up and resumption option results for different σi
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Figure 4: Combined option comparison for different σi

Surrender Option

Like the paid-up options, the value of the surrender option increases with increasing σI . More-
over, surrender options are generally more valuable than paid-up options. If, e.g., σI = 2%, the
V/P ratio reaches 8.78% following the LSMC strategy and nearly 13.35% for the upper limit (for
θ = 4%).
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Figure 5: Surrender option results for different σi

Combined Paid-up and Surrender Option

For the combined paid-up and surrender option, Figure 6 shows almost the same structure as in
Figure 5 for the surrender option. Figure 7 compares the single premium payment option (paid-
up only and surrender only) and the derived single option (the difference between the combined
option and the paid-up option or the surrender option, respectively).

Figure 7(a) shows that the derived paid-up option value for both the LSMC and upper limit
approaches is close to zero. Hence, when combining paid-up and surrender options, the value of
the paid-up option becomes negligible. From Figure 7(c), it can be seen that more than 60%
of the paths’ best strategies involve exercising the surrender option alone. Using the LSMC
approach, at the end of each year a decision is made about whether to exercise the option and
which options to exercise based on the available information. The value of the surrender option is
generally higher than that for the paid-up option. Therefore, a policyholder is more likely to ex-
ercise the surrender option. This strategy works as a reasonable optimal two-option strategy, as
the upper limit approach also generates similar results: The paid-up option has negligible value
(cf. Figure7(a)), and in most cases the surrender option is the only option used (cf. Figure 7(d)).
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Figure 6: Combined paid-up and surrender option results for different σi
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Figure 7: Combined option comparison for different σi (θ = 4%)

4.3 Sensitivity of Premium Payment Option

This section illustrates the influence of two other parameters on option value: contract duration,
T , and the market price of risk (MPR).

The Influence of Contract Duration, T

Figure 8 shows the V/P ratio of all four premium payment options for T = 10 and T = 20. For
T = 20, no data is available for σI ≥ 1.5% as there exists no α with 0 ≤ α ≤ 1 that satisfies the
fair contract condition (cf. Figure 1(b)). V/P ratios increase dramatically when expanding the
contract duration to T = 20.
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Figure 8: Value/Premium ratio, V/P comparison between T=10 and T=20 for θ = 4%

The Influence of MPR, λ

From Figure 9, when varying λ, the participation rate α is always adjusted to satisfy the fair
contract condition. The numerical results show that reducing the MPR slightly increases the
value of the premium payment options.
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(a) V/P for paid-up option
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Figure 9: Value/Premium ratio, V/P with different λ for θ = 4%

5 Economic Interpretation and Outlook

The numerical results show that, when stochastic interest rates are taken into account, the fair
values of premium payment options can be substantial. In addition, insurance companies face
- in addition to pure random risk - extensive model and parameter risk in respect to the inves-
tigated options. Considering these factors, insurers may need to charge higher premiums than
those proposed by the fair pricing concept shown in this paper.

Practitioners may argue that policyholders typically do not exercise premium payment options
in a rational way (i.e., in the sense laid down in Chapter 3) and thus lower option prices based
on observed exercise behavior could be sufficient. However, in such a case, insurance companies
face some additional risk - policyholders could be advised about optimal exercise procedure and
hence change their future behavior.

In most cases, insurance companies are not free to choose whether to offer premium payment
options or not. For instance, a life insurance contract must have a surrender option by law in all
insurance markets we are aware of. Under the assumptions taken in this paper, insurers must
charge - in addition to the savings premium and premium for the term life part - substantial
premiums for payment options to finance adequate risk management measures. This may reduce
the attractiveness and hence the demand for life insurance contracts, given a competitive market
with alternative products in the field of old-age provision. In addition, some policyholders may be
convinced that they will never use any of the premium options, resulting in no willingness to pay.

One way to tackle this problem from the insurer’s point of view is not to base adjustment of
benefits once an option is exercised on an ex ante fixed actuarial framework, but instead to pay
out market values under any condition. The insurer would face no risk from premium payment
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options and need not charge any additional premium (because the option can never have a pos-
itive value). On the other hand, the insurer would then be unable to promise policyholders a
fixed payback under certain exercise procedures.

Alternatively, insurance companies could charge policyholders a fee whenever an option is ex-
ercised. The advantage here is that only those policyholders who exercise a premium payment
option would need to pay. In this context, the premiums charged are lower, ceteris paribus, and
may tempt customers to buy a life insurance contract. However, regulatory bodies are currently
attempting to set minimum levels for surrender values in Europe to thwart such an approach
and it could negatively influence the financial stability of life insurance companies if a large pro-
portion of policyholders surrender their contracts at the same time (insurance run scenario).
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Appendices

A Monte Carlo Convergence

Figure A1 shows the speed of the convergence rate. We ran a Monte Carlo simulation for differ-
ent N (from 101 to 106) with θ = 4%, σI = 0.2%, and σI = 1.8%. Both option values and the
participation rate, α, stabilize when N reaches 104.
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(c) Paid-up value
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value
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(e) Surrender value
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Figure A1: Convergence speed of α and the values of different premium payment options

B Least-squares Monte Carlo Method (LSMC)

Figure A2 compares the LSMC strategy discussed in this paper and named “adjusted LSMC”
to the Longstaff and Schwartz (2001) method. For our numerical example, we demonstrate that
the results from the adjusted LSMC are slightly higher.
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Figure A2: Comparison of surrender option value using different LSMC methods

To check the stability of LSMC approximation, we ran the first simulation and derived α̂ and
α̂′ from equation (25) and (27). We then generated new simulation paths and determined their
optimal exercise points using the derived α̂ and α̂′. The original result (the first simulation) and
the second result (the new simulation) as out of sample (OoS) are compared in Table 3. We
found no substantial differences, especially as σI increases.

Table 3: Out of sample check for paid-up option and surrender option values

σI Paid-up P-OoS Diff Surrender S-OoS Diff
1 0.00% 1.65 0.74 75.50% -2.18 -1.43 -41.33%
2 0.10% 17.73 17.12 3.51% 25.36 24.35 4.06%
3 0.20% 33.22 32.72 1.52% 54.28 52.80 2.76%
4 0.30% 49.22 47.83 2.86% 83.59 82.39 1.45%
5 0.40% 64.68 62.97 2.68% 112.60 111.44 1.04%
6 0.50% 80.60 78.56 2.57% 141.58 140.67 0.64%
7 0.60% 95.67 93.15 2.68% 170.79 170.20 0.35%
8 0.70% 111.83 109.29 2.30% 199.59 199.55 0.02%
9 0.80% 127.78 125.39 1.89% 229.09 228.70 0.17%

10 0.90% 143.37 141.18 1.54% 258.79 257.52 0.49%
11 1.00% 159.20 156.66 1.61% 287.76 287.70 0.02%
12 1.10% 175.07 172.22 1.64% 318.23 317.43 0.25%
13 1.20% 191.53 187.79 1.97% 348.17 348.55 0.11%
14 1.30% 207.31 204.13 1.54% 378.78 378.43 0.09%
15 1.40% 223.97 220.84 1.41% 409.23 408.73 0.12%
16 1.50% 240.46 236.73 1.57% 439.66 439.65 0.00%
17 1.60% 257.27 254.08 1.25% 471.43 471.09 0.07%
18 1.70% 273.95 270.29 1.34% 503.56 502.38 0.23%
19 1.80% 291.64 288.15 1.21% 535.32 534.78 0.10%
20 1.90% 306.16 305.61 0.18% 566.82 567.74 0.16%
21 2.00% 325.83 322.42 1.05% 600.45 601.34 0.15%
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