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Abstract 
Age and gender are the two most common risk factors considered in the life 

insurance products. Other risk factors can also be used, depending on the feasibility 

and marketing, as well as data availability. Previous studies showed that the newly 

insured, likely passed certain health exams, have lower mortality rates than those who 

are already insured. Select and ultimate tables are often used by insurance companies 

to deal with the mortality discrepancy between the insured with different policy years. 

However, the effect of policy year is easily confused with the mortality improvement 

over years for a longer study period. In this study, we propose a modification of 

Lee-Carter model which can include the effect of policy year, as well as the mortality 

improvement. We first use computer simulation to evaluate the proposed approach, 

especially on the parameter estimation, and then apply it to the experienced data from 

Taiwan’s largest insurance company. Results from both studies support the proposed 

approach and including the select effect (i.e., policy year) in the Lee-Carter model is a 

feasible approach.  
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1. Preface 

Mortality improvement has been a global trend since the end of World War II.  

In addition to exploring whether the human longevity has a limit, many studies focus 

on searching the risk factors related to mortality rates.  Age and gender are the two 

most common risk factors considered in the life insurance products.  Tobacco use is 

another risk factor, but it is not easy to verify whether a person smokes and previous 

studies showed that many smokers tend to lie on life insurance applications.  Other 

than these factors, it is believed that the newly insured, likely passed certain health 

exams, have lower mortality rates than those who are already insured. This 

phenomenon is often called as the select effect and it appears not only in life 

insurance products but also in health products.  The insurance companies usually use 

select life tables to differentiate the mortality risk of the insured with respect to the 

policy year.  

The select effect is well-known and often appears as a standard topic in the 

textbooks of actuarial mathematics (e.g., Bowers et al., 1997; Geber, 1995). However, 

surprisingly, not many past studies focus on modeling the select effect. For example, 

Carriere (1994) proposed a parametric model based on a linear combination of 

survival functions, and Renshaw and Haberman (1997) used a mixture of generalized 

linear and non-linear models. These studies focused mainly on the methodology for 

constructing the select mortality tables, especially on the connection between 

mortality rates of different policy years.  Considerations of graduating mortality rates 

in two dimensions (e.g., age and policy year) and higher dimensions are more 

complicated, comparing to the traditional one-dimensional graduation with respect to 

age (London, 1985).   

Quite a lot of factors contribute to with few methods proposed for modelling the 

select effect.  The data availability is one of them.  In order to evaluate whether the 

newly insured have lower mortality rates, a longer observation period is often 

required (10-year and longer periods are recommended).  This is probably the main 

reason why there are not many select mortality tables available. For example, since 

the 1975-80 Basic Tables, the Society of Actuaries (SOA) in U.S. published only three 

studies of select period: 2001, 2008, and 2014 Valuation Basic Tables (VBA) (Klein 



and Krysiak, 2014).  The length of select period is quite different for different 

insurers and different insurance products, as reported in 2014 Select Period Mortality 

Survey, and it ranges from 10 years to more than 30 years for term products.  The 

size of select effect also varies a lot.  

However, on the other hand, a longer observation period would further 

complicate the modelling of select effect. The mortality rates of later policy years can 

be affected by the mortality improvement and thus the select effect would likely be 

under-estimated, assuming that the mortality rates of all ages decrease with time. To 

avoid the possibility of under-estimation, both the factors of select effect and 

mortality improvement need to be considered.  Note that most of the past studies 

regarding the select effect did not incorporate the mortality improvement2. In fact, it is 

still not considered in pricing products now for many countries (including Taiwan), 

even for annuity products.  

In this study, we use the Lee-Carter model (Lee and Carter, 1992) as the base for 

handling the mortality improvement and propose adding an extra factor for the select 

effect to the model.  The estimation of mortality improvement and select effect is 

done via two-stage iteration, like most modifications of Lee-Carter model.  We will 

use computer simulation to evaluate the proposed approach, showing that it can 

provide unbiased estimates to the parameters.  We also use empirical data to 

demonstrate the estimates of select effects are underestimated if the mortality 

improvement is not considered.  

The proposed mortality model can be used to identify the mortality risk 

regarding the policy year and life insurance companies can use it in underwriting and 

pricing products. The rest of this manuscript is organized as follows. Section 2 

provides the description of proposed method, as well as related references. The 

computer simulation is given in Section 3, with the parameters of mortality 

improvement and select effect from the largest insurance companies, Cathay Life 

Insurance Company ltd. (CLI), in Taiwan. Empirical study is in Section 4 and the data 

are also from Cathay.  The results from simulation and empirical study support the 

                                                      
2 Mortality improvement is an important factor for modelling mortality rates today but it was not in the 
late 1990’s. 



use of proposed approach and it can provide stable and accurate estimates of 

parameters and mortality rates.  

 

2. Methodology  

As mentioned in the previous section, the size and the length of select effect 

vary a lot, depending on the merit of insured populations and insurance products. For 

example, the select period is 5 years for smokers (SCOR, 2016) in term life products 

and the size of select effect is more than 60% (i.e., mortality rates 40% or less than 

that of standard group).  The results of estimation for the size and length of select 

effect should not be influenced by the estimation methods, the size and structure of 

insured population, or other factors (e.g., lapse rate, underwriting).  Intuitively, the 

grand averages of mortality (& incidence) rates of different policy years can be used 

to estimate the size and length of select effect.   

However, the mortality improvement would distort the estimation of select 

effect and this is the reason why we need to use the Lee-Carter (or LC) model to 

model the mortality reduction. The LC model (Lee and Carter, 1992) is a popular 

mortality model and it has been used in estimating and forecasting mortality years for 

more than 20 years.  The LC model assumes that  

xttxxxtm εκβα ++=)log(                       (1) 

where xtm is the central mortality rate for age x and time t , and the error xtε is assumed 

to be normally distributed.  It is like fitting a group of linear regression equations 

simultaneously with same predictor (i.e. time), and each regression equation has its 

own slope and intercept, which are constant of time. The slope of the regression 

equation can be interpreted as mortality improvement over time for each age, since 

the time variable 𝜅𝑡 is usually a linear function of time. 

We propose adding the select effect to the LC model, or  

xtssxstxxxts xxICm εκβα +≤++= }{)log(                (2) 



where xtsm is the central mortality rate at age x, time t, and policy year s.  Also, xsC is 

the size of select effect at age x and policy year s, and sx is the length of select period. 

In other words, the proposed model has 3 coordinates (age, time, policy year), similar 

to that of the cohort LC model (Renshaw and Haberman, 2006).  However, the 

proposed approach does not have the problem of linear dependency, or time = cohort 

+ age, and the estimation process would be straightforward. The two-stage estimation 

can be used for the proposed approach, like most of the modified LC models.  Also, 

in this study, we assume that the parameters of select effect do not change with time.   

We first obtain the parameter estimates xα̂ , xβ̂ , and tκ̂ via the SVD (Singular 

Value Decomposition), and then the select effect (size xsC and length xx ). Intuitively, if 

the proposed model in (2) is true, the difference between )log( xtsm and txx κβα ˆˆˆ + can be 

used to estimate the select effect.  However, as mentioned earlier, the mortality 

improvement and select effect are confounded to each other, and the initial estimates

xα̂ , xβ̂ , and tκ̂ would be biased as well.  Thus, we can use the difference between

)log( xtsm and }{ sxs xxIC ≤ to revise the parameter estimates xα̂ , xβ̂ , and tκ̂ . In other 

words, the two-stage estimation of is done recursively until all parameters’ estimates 

converge.  The criterion of convergence can be chosen as the difference of estimates 

between two iterations smaller than a selected threshold, which is usually set as 410− or
610− .  The estimation process can be summarized as follows.  

Step 0. Let *)log( xtm be the average of )log( xtsm over all policy years. 

Step 1. Apply SVD to *)log( xtm , obtaining estimates xα̂ , xβ̂ , and tκ̂ . 

Step 2. Compute the difference between )log( xtsm and txx κβα ˆˆˆ + , and define the 

residuals of select effect txxxtsxts me κβα ˆˆˆ)log( −−= . Then, let the estimate 

of select effect xsĈ equal the average of xtse over t. 



Step 3. Apply the parameters’ estimate to obtain the estimate of central death rates

}ˆ{ˆˆˆˆ)ˆlog( sxstxxxts xxICm ≤++= κβα .  

Step 4. Let *)log( xtm be the average of )ˆlog( xtsm over all policy years. 

Step 5. Apply SVD to *)log( xtm , obtaining estimates xα̂ , xβ̂ , and tκ̂ .  

Step 6. Compute the difference between )log( xtsm and txx κβα ˆˆˆ + , and define the 

residuals of select effect txxxtsxts me κβα ˆˆˆ)log( −−= . Then, let the estimate 

of select effect xsĈ equal the average of xtse over t. 

Step 7. Repeat Steps 3 to 6 until the differences of parameters’ estimates between two 

consecutive iterations are smaller than a selected threshold.  

We will use computer simulation and empirical data to evaluate the proposed 

model.  First, in the next section, we use computer simulation to check the two-stage 

estimation process and verify if it can provide unbiased and stable estimates of 

mortality rates. Since the preceding iteration process is simple and easy to use, usually 

it would converge in a few seconds. We will compare the parameters’ estimates 

between consecutive iterations. 

 

 
Figure 1. Parameters of the LC model (Taiwan Data) 

 

3. Computer Simulation 

For the simulation study, we need two sets of parameters: one for the mortality 

reduction (i.e., parameters in the LC model) and the other for the select effect.  The 

parameters of mortality reduction are from plugging into the Taiwan mortality data 



(2005-2014) and suppose that the mortality rates follow the Lee-Carter model and the 

population structure is the same as that in Taiwan. We treat the estimates of xα , xβ , 

and tκ as the true values (Figure 1). The parameters of select effect partly refer the 

experienced values of CLI, with some modifications making the size of select effect a 

smooth function.  

Basically, we assume that the size of select period is a linear function of policy 

years and Table 1 shows the values of size of select effect, given 10 age groups and 10 

groups of policy years.  The mortality rates of each policy years need to multiply the 

values in Table 1. For example, the value 0.8 for ages 0~29 at policy year 2 indicates 

that the mortality rate at this age and policy combination is 80% of the standard rate.  

Also, the length of select effect is a non-decreasing function of age, with 3-year to 

8-year select period.  Note that the simulation setting suggests that the size of select 

effect is much larger than the mortality improvement.  The age group 0~29 has the 

largest annual mortality reduction (about 3%) but it is still smaller than the select 

effect between two policy years (e.g., policy years 1 to 2).  

 

Table 1. The Size of Select Effect (Simulation) 

Ages 
Policy Year 

1 2 3 4 5 6 7 8 9 10+ 

0~29 0.7 0.8 0.9 1 1 1 1 1 1 1 

30~34 0.6 0.7 0.8 0.9 1 1 1 1 1 1 

35~39 0.6 0.7 0.8 0.9 1 1 1 1 1 1 

40~44 0.5 0.6 0.7 0.8 0.9 1 1 1 1 1 

45~49 0.5 0.6 0.7 0.8 0.9 1 1 1 1 1 

50~54 0.4 0.5 0.6 0.7 0.8 0.9 1 1 1 1 

55~59 0.4 0.5 0.6 0.7 0.8 0.9 1 1 1 1 

60~64 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1 1 

65~69 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1 1 

70+ 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1 
 

Note that we apply the real exposures of age and policy combination from the 

CLI (2005-2014), in order to make the simulation close to the reality.  There are 



approximately 23 million people in Taiwan and 2/3 of them purchase life insurance 

products (Yue and Huang, 2011).  The CLI is the largest life insurance company in 

Taiwan and about 8 million people purchased life insurance policies from the CLI.  

It is believed that the LC model would have unstable parameter estimates when the 

population size is small, especially for the case when the size is not larger than 

200,000 (Yue et al., 2017).  Since the exposures from the CLI are fairly large, we use 

the singular value decomposition (SVD) to obtain the parameters’ estimates of the LC 

model.  Also, we generate the numbers of deaths via Poisson distribution and then 

dividing them to the exposures to acquire the simulated mortality rates.    

In addition to the proposed model, we also consider a modified version of the 

LC model to estimate the select effect (or reduced form in Equation (2)),  

****)log( xssxxxsm εκβα ++=                     (3) 

where xsm is the central mortality rate for age x and policy year t.  The reduced model 

in (3) only includes the factor of policy year.  We should check if the reduced model 

can provide acceptable estimates of select effect and evaluate whether it is necessary 

to include both the mortality reduction and select effect in the mortality model.  

 

 

Figure 2. Bias of xα Estimate for the Full Model (1st Iteration) 

 

The computer simulation is repeated 1,000 times and the estimates of all 

parameters are recorded.  We first evaluate the full model in Equation (2) and use the 



estimates of xα as a demonstration. Figure 2 shows the bias of xα estimate for the first 

iteration and apparently it is under-biased. The estimates of parameters xβ , tκ , and 

select effect are also under-biased for the first iteration. Note that the estimates of xα ,

xβ , and tκ at the first iteration is exactly the same as those of the LC model, and this 

confirms that the mortality improvement and the select effect are confounded with 

each other.  On the other hand, the estimates of all parameters improve with the 

number of iterations and they become very stable at the 8th iteration. Appendix A 

shows the bias of estimates for parameters xα , xβ , and tκ and they are close to 0 at the 

8th iteration.  

 

Table 2. The Estimates of Select Effect (8th Iteration, Full Model) 

Ages 
Policy Year 

1 2 3 4 5 6 7 8 9 10+ 

0~29 0.700 0.801 0.899 1 1 1 1 1 1 1 

30~34 0.601 0.695 0.802 0.902 1 1 1 1 1 1 

35~39 0.601 0.702 0.798 0.901 1 1 1 1 1 1 

40~44 0.499 0.601 0.701 0.799 0.902 1 1 1 1 1 

45~49 0.500 0.601 0.701 0.801 0.899 1 1 1 1 1 

50~54 0.401 0.500 0.601 0.700 0.800 0.901 1 1 1 1 

55~59 0.399 0.500 0.599 0.699 0.800 0.900 1 1 1 1 

60~64 0.299 0.401 0.501 0.601 0.701 0.800 0.899 1 1 1 

65~69 0.300 0.402 0.501 0.600 0.698 0.801 0.901 1 1 1 

70+ 0.200 0.300 0.401 0.500 0.600 0.700 0.801 0.899 1 1 

 

The estimates of select effect behave similarly and the bias are very smaller for 

all combinations of age and policy year at the 8th iteration, as shown in Table 2.  It 

seems that the proposed estimation process does provide stable estimates to the 

parameters for the full model in Equation (2).  The evaluation of reduced model in 

Equation (3) can be conducted in a similar way and we only show the estimates of 

select effect for comparison.  Table 3 lists the estimates of reduced model and 



obviously they are under-biased. It seems that the reduced model, i.e., without 

considering the mortality reduction, would over-estimate the mortality rates inside the 

select period.  
 

Table 3. The Estimates of Select Effect (Reduced Model) 

Ages 
Policy Year 

1 2 3 4 5 6 7 8 9 10+ 

0~29 0.703 0.803 0.921 1 1 1 1 1 1 1 

30~34 0.611 0.704 0.819 0.925 1 1 1 1 1 1 

35~39 0.612 0.711 0.814 0.919 1 1 1 1 1 1 

40~44 0.525 0.629 0.737 0.840 0.951 1 1 1 1 1 

45~49 0.526 0.632 0.739 0.843 0.948 1 1 1 1 1 

50~54 0.437 0.545 0.657 0.765 0.876 0.988 1 1 1 1 

55~59 0.424 0.531 0.642 0.751 0.866 0.977 1 1 1 1 

60~64 0.328 0.439 0.552 0.666 0.785 0.909 1 1 1 1 

65~69 0.320 0.426 0.539 0.660 0.772 0.896 1 1 1 1 

70+ 0.236 0.354 0.472 0.592 0.711 0.832 0.956 1 1 1 

 

We can compare the estimates of length of select periods for the full and 

reduced models as well.  Table 4 shows the true and estimated length of select period 

for two mortality models.  The estimated length of select periods are obtained from 

the Monte Carlo p-value, depending on if the estimated size of select effect is 

significantly different from 1.  The full model provides accurate estimates of the 

length of select period but the reduced model under-estimates not only the size of 

select period but also the length of select period.  It seems that the select effect is 

confounded with the mortality reduction and we should include both factors in 

modelling mortality rates.   
 

Table 4. The Estimates of Length of Select Effect (Simulation) 
Ages 0~29 30~34 35~39 40~44 45~49 50~54 55~59 60~64 65~69 70+ 
True 3 4 4 5 5 6 6 7 7 8 
Full 3 4 4 5 5 6 6 7 7 8 

Reduced 3 4 4 4 5 5 5 6 6 6 

Note: The cells with gray background are under-estimated.  



 
MAPE (Mean Absolute Percentage Error) of mortality rates can also be used to 

evaluate the proposed model, where the MAPE is defined as  

MAPE = Average of (∑ −

stx xts

xtsxts

q
qq

,,

2)ˆ( )×100%.    (4) 

Table 5 shows the MAPEs of the LC model, full model in (2), and reduced model in 

(3).  Again, the full model has the smallest error. However, surprisingly, the LC 

model fits fairly well, although the true model is the LC model plus the select effect. 

Probably the sizes of select effect are linear functions of policy year and the select 

effects are larger than the mortality reductions are the main causes, which can also 

explain why the MAPE of reduced model is very small as well.  We will continue the 

empirical study, using the data from the CLI, in the next section. 
 

Table 5. MAPE of Mortality Estimates (Simulation) 

 LC  
model 

Full  
model 

Reduced 
model 

MAPE 5.47% 1.92% 2.24% 

 

4. Empirical Study 

For the empirical study, we adapt the same setting in the previous section: 10 

age groups and 10 groups of policy years for the study period 2005-2014, using the 

actual data (including age-specific exposures & numbers of deaths) from the CLI. 

These data are from the policies of whole life and term life for more than 10 years. 

Note that the claim system of the CLI was under a major reorganization in the early 

2000’s and the sales of life insurance policy also increased significantly at the turn of 

21st century. Thus, we only choose the experienced data of the last 10 years to avoid 

the problem of data inhomogeneity.  

Again, we use the CLI data to evaluate the fitting of mortality rates for the LC, 

full, and reduced models.  There is a difference in determining the size and length of 

select effect.  In the previous section, we can use t-test or similar test to decide the 

select effect based on 1,000 simulation runs, i.e., using the variance from 1,000 



replications for hypothesis testing, but no data replications in the empirical study.  Of 

course, we can use bootstrap simulation to estimate the variances of estimates for the 

select effect but it requires quite a lot of computation time. Instead, we suggest using 

the value 0.95 as the threshold, based on the experience from simulation study. If the 

estimated values of sizes of select effect are smaller (or larger) than 0.95, then there 

are (or there are no) select effects. 

First, we compare the estimation results of select effect for the full and reduced 

models. It seems that the estimation results are pretty similar to those in the 

simulation study and, in general, the reduced model has shorter and smaller estimates 

of select effects.  The estimated lengths of select effect are shown in Table 6.  The 

full model also has longer select effects than the reduced model in all age groups.  

Similarly, the estimated sizes of full model are larger than those of reduced model, 

especially for the younger ages and middle age groups, around ages 50~64.  
 

Table 6. The Estimates of Length of Select Effect (Empirical) 

Ages 0~29 30~34 35~39 40~44 45~49 50~54 55~59 60~64 65~69 70+ 
Full 9 8 6 7 8 9 9 9 9 9 

Reduced 4 6 5 6 6 6 6 6 7 8 

 

 Next, we compare the mortality fitting of three mortality models and the MAPE 

is also used in the empirical study.  The full model still has the smallest MAPE and 

all three models have satisfactory estimation results. Even though there are select 

effects, the LC model is still a fine candidate of mortality model and it seems that the 

trend of mortality improvement is more obvious than the select effect.  On the other 

hand, the empirical results also suggest that the size of select effect is much larger 

than the mortality improvement, similar to the setting in the simulation study. Thus, 

the reduced model also has smaller MAPE than that of the LC model as well.  
 

Table 7. MAPE of Mortality Estimates (Empirical) 

 LC  
model 

Full  
model 

Reduced 
model 

MAPE 7.44% 2.49% 3.64% 

 



5. Conclusion and Discussions 

Mortality improvement has been one of the major considerations, as well as the 

factors of age and gender, in modelling mortality rates since the life prolonging 

becomes our consensus. Thus, stochastic mortality models are a popular choice in 

pricing life insurance and annuity products although scholars have different opinions 

about the trend and speed of mortality reduction. However, past studies found that the 

estimates of mortality improvement can be influenced by other factors (and vice 

versa), and the cohort effect is one of them (Renshaw and Haberman, 2006). The 

select period is another possible factor which can be confounded with the mortality 

improvement, but only a few studies focused on handling both the effects of mortality 

improvement and select period.  

We proposed a mortality model and its estimation method for handling both the 

effects of mortality improvement and select period. We used computer simulation to 

confirm that the proposed approach and its estimation method does provide stable and 

reliable estimates. On the other hand, the regular LC model would have biased 

estimates on the parameters of mortality reduction. Similarly, without including the 

mortality improvement (i.e., the reduced model in Equation (3)) would also produce 

biased estimates. The results of empirical study support the proposed approach as well. 

It appears that both the mortality improvement and the select effect exist and they 

should be included in the mortality model.  

The proposed estimation is via a two-stage iteration process and it becomes 

fairly stable after the 4th iteration and converges before the 10th iteration (i.e., 

estimates between two consecutive iterations 6
1 10|ˆˆ| −
+ <− ii θθ for 10≥i ). Interestingly, 

the convergence rate is not the same for all parameters and it seems that the estimates 

of xβ and tκ would be more sensitive. However, this is not the case, based on the 

simulation and empirical studies. Although the role of parameters xα and select effects 

is like intercept and dummy variables, but they requires more iteration steps to 

become stable, especially for the select effects. This quite contradicts to our intuition 



but it matches to our research experience of the LC model when the population size is 

small (Yue and Wang, 2017). 

Although the mortality reduction and select effect are easily mixed with each 

other, they do not produce the problem of linear dependency, like the cohort 

modification of LC model (Renshaw and Haberman, 2006) and Age-Period-Cohort 

model (Wang and Yue, 2015). Perhaps this is the reason why the parameters of 

proposed approach fairly quickly.  If we want to consider more factors in the 

mortality model, then we need to pay more attention to the estimation methods. We 

expect the iteration process would be unstable when there are possibilities of linear 

dependency or similar problems. The situation can be even more tricky if the 

exposures (or size) of target population is small (Yue and Wang, 2017) and we may 

need techniques in variance reduction to acquire stable parameter estimates.   
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Appendix A. Bias of Estimates for Parameters xα , xβ , and tκ   

1. Parameter xα  

 

 

2. Parameter xβ  

 

 

  



3. Parameter tκ  

 

 


