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Abstract
We consider an asset liability model under internal solvency constraint which includes default

probability as well as price-demand functions and combine insights from empirical and theoretical
research. Furthermore, as a result of policyholders’ heterogeneous willingness to pay, we introduce
heterogeneous premiums to maximize insurer’s overall net present value and compare the results
with an optimal homogeneous premium. For determining a reservation price for the insurer, we use
the Margrabe-Fischer option pricing formula. Our numerical example documents that heterogeneous
premiums for homogeneous risks improve the net present value when perfect expectations underlie
and are vulnerable against a cost shift, but do not per se induce a decrease of the net present value.
Moreover, we recognize that the optimal price setting under overall net present value maximization
varies from the underwriting net present value maximization on the individual risk level. Hence, in
practice, an overall asset liability management perspective should be in focus to reach the best results
from the company’s point of view.
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Demand Function, Risk and Insurance Management
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1 Introduction

In times of a period of low interest rates, financial institutions face the challenge to generate appropriate

returns from their invested capital. In general, funds have more risky investments on the strategic map

(see, e.g., Choi and Kronlund, 2015; Di Maggio and Kacperczyk, 2017), whereas insurer’s investment be-

havior is rather restricted by regulatory requirements, such as Solvency II (see, e.g., Braun et al., 2014).

However, improving the return on capital of an insurer is not only determined by the investment strat-

egy. Underwriting profit generation, which we describe as policyholders’ premiums minus claims, also

represents an integral component for an improvement of the profitability. While various research focuses

on optimal investment strategies (see, e.g., Braun et al., 2014, 2017; Eckert and Gatzert, 2017), we set

underwriting profit generation in the center of our analysis. In contrast to Braun et al. (2017), we do not
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assume that the pool of policyholders of an insurance is given and hence is not a decision variable for

the insurer. The environment in which insurers operate is dynamic and thus changing time-dependently.

Therefore, we recognize the demand for insurance as well as policyholders’ willingness to pay premium

as important parameters for the profitability of an insurer.

Furthermore, we include insights about the inherent existence of default probability and the relation

between default probability and willingness to pay premium in our analysis. Concerning the existence of

default probability, previous research clarifies that a non-default assumption is not adequate as a result of

the systemic risk within the financial world. The financial crisis has illustrated that even institutions which

are regarded as too-big-to-fail can actually fail (see, e.g., Harrington, 2009; Brownlees and Engle, 2016).

According to the relation between default probability and willingness to pay premium, Wakker et al.

(1997) and Zimmer et al. (2009, 2016) emphasize with their empirical research that even a low default

probability reduces the willingness to pay massively. Based on this research, we derive a relation between

default probability and willingness to pay premium and embed it in our asset liability model. Moreover,

we implement a price-demand function. In the context of substandard annuities, Gatzert et al. (2012)

use a linear price-demand function. They analyze the optimal price-demand combination in a certain

risk class and examine how different sub-populations influence the optimal price-demand combination.

In addition, they include a misclassification of the risk class and the effect on the optimal price-demand

combination in their investigation. Einav and Finkelstein (2011) also use a linear price-demand function

in their analysis of adverse selection in the insurance market. In contrast, Zimmer et al. (2016) show that

a convex price-demand function underlies within their empirical data set. Including both views in our

approach, we firstly assume a linear price-demand function and later introduce the convex price-demand

function which possesses in our case the same reservation premium and actuarilly fair premium than the

linear function.

Derived from the insight that heterogeneous customers have a heterogeneous willingness to pay (see

Zimmer et al., 2016), we extend previous research which considers an optimal premium-demand combi-

nation (see, e.g., Gatzert et al., 2012) and investigations that focus on the reduction of the willingness

to pay if default may take place (see, e.g., Schlütter, 2014; Eckert and Gatzert, 2017). Hence, we intro-

duce heterogeneous premiums and analyze how different premium levels influence the insurer’s overall net

present value. Moreover, we show in detail that the optimal demand varies between an isolated premium-

costs consideration (as it is, e.g., done in Gatzert et al., 2012) and an overall perspective. Besides, we

emphasize that heterogeneous premiums exhibit the potential to induce a shift of the mindset of an in-

surance enterprise. The insurance enterprise is adapting the insurance premium to the willingness to pay

and not policyholder’s willingness to pay to the insurance premium (which is only possible downwards).

We evolve an internal solvency constraint and focus on a scenario under perfect expectations as well as a

cost shift. In this context, we include uncertainty which is described as a simple variation of the expected

costs from different points in time.
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In summary, we develop an asset liability model based on default probability as well as price-demand

functions and use heterogeneous premiums to maximize the net present value of the insurer. Net present

values are calculated by using the Margrabe-Fischer option pricing formula. We combine insights from

theoretical as well as empirical research and as outlined above, we extend previous research in several

ways. Our aim is to critically reflect the use of heterogeneous premiums under default probability,

price-demand functions, solvency constraint, and further model assumptions. This paper is organized as

follows. In section two, we thematize the relation between default probability, price-demand function,

and premium as basis for our asset liability model in section three. The structure of assets and liabilities,

heterogeneous premiums, and the constraints are in focus of section three. Furthermore, in section four,

we run a numerical analysis and compare the results under a scenario of perfect expectations as well as

misjudging the expected costs. The economic implications of our findings are discussed in section five.

Section six concludes with the main insights.

2 Influence of Default Probability and Price-Demand Function

according to Insurance Premium

2.1 Central Assumptions for the Two Stakeholder Groups

In this paper, we strive for a shareholder value (overall net present value) maximization measured by

the Margrabe-Fischer option pricing formula. In this context, we assume that insurance companies

have access to a frictionless and complete capital market and can replicate future cash-flows. Hence,

reservation prices for insurance contracts from the viewpoint of the provider are under the Margrabe-

Fischer option pricing formula given by the price of the replication portfolio (risk-neutral valuation

technique). We assume that policyholders cannot replicate future cash-flows and face a price-demand

function. In addition, their willingness to pay for insurance depends on the default risk of the insurer (see,

e.g., Wakker et al., 1997; Zimmer et al., 2009, 2016). The willingness to pay on the policyholders’ side

is – due to risk-aversion – typically higher than the risk-neutral price derived by the Margrabe-Fischer

option pricing formula.

2.2 Default Probability and Insurance Premium

From the perspective of rational behavior, an increase of 1 percent default probability decreases for a

given insurance amount the actuarially fair premium by 1 percent. However, individuals do not behave

completely rational, even not when they intend to be rational. Instead, humans often act under the

condition of bounded rationality (see Simon, 1957). As a result of restricted abilities, individuals over-

weight or ignore very unlikely events (see Tversky and Kahneman, 1979). From the point of view of an

insurance company, it is uncritical when a policyholder is ignoring (extreme) risk events which lead to a

default of the insurance. More precisely, the willingness to pay a certain premium is not reduced by the

existence of a potential risk when the policyholder does not recognize the risk, e.g., the potential default

of an insurance contract is often not taken into consideration. However, previous research clarifies that

3



if a low default probability is given and the policyholders are aware of such a risk, the willingness to pay

a premium decreases substantially.

Wakker et al. (1997) analyze the willingness to pay an insurance premium and underlie either a

default-free insurance or a 1 percent default probability. The authors demonstrate with a direct survey

that the existence of 1 percent default probability leads to an average premium reduction of over 20

percent to compensate the potential default. Zimmer et al. (2009) generate similar results based on an

online questionnaire. For 0.3 percent default probability, the average premium decreases by 14 percent

related to a default-free insurance. 4.9 percent default probability leads to an average reduction of 26

percent. The findings of Zimmer et al. (2016) illustrate as well that the risk-averse behavior of policy-

holders is present in the context of probabilistic insurance1. Table 1 summarizes the above-mentioned

empirical research.

Table 1: Empirical Research about Default Probability and Insurance Premium

Authors Wakker et al. (1997) Zimmer et al. (2009) Zimmer et al. (2016)

Default Probability (%) 0; 1 0; 0.3; 4.9 0; 1; 2; 3

Average Premium

Reduction (%)
higher 20 (1) 14 (0.3); 26 (4.9) 25 (1); 38.04 (2); 50 (3)

Technique Direct survey Online questionnaire Laboratory experiment

Participants (number)
Students (230),

Money managers (75)

No target audience;

invited via e-mail (719)

Students (117),

Employee (28),

Other (36)

Type of Insurance

Fire insurane,

Care insurance,

International

investment

Household insurance Theft insurance

Based on the underlying empirical research, the question comes up how the willingness to pay a

premium and default risk are related. Derived from the insights of Zimmer et al. (2009), Lorson et al.

(2012) formulate a logarithmic regression to describe the relation between default probabilityDPij (which

describes the default risk) and the premium reduction πR
mean. More concretely, DPij is understood as

the probability that an insurance contract among insurer i and policyholder j results in a default

πR
mean(DPij) = 0.0419 · ln (DPij) + 0.3855 ∀DPij(0, 1]. (1)

Thus,

1When a hazard or damage occurs, the probabilistic insurance does only pay off with a probability smaller than one
(see Wakker et al., 1997). A probabilistic insurance can be induced by the insurance company itself, which structures the
insurance contract in a way that there is only a payoff with a probability lower than one, or an inherent default probability
(e.g., caused by systemic risk) leads to a probabilistic insurance.
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Figure 1: Default Probability and Premium

πmean(DPij) = 1− πR
mean(DPij) = 1− (0.0419 · ln (DPij) + 0.3855) (2)

is defined as the mean premium πmean which is paid dependent on DPij . Lorson et al. (2012) argue

that this type of regression is a good fit for small default probabilities. However, the empirical study of

Zimmer et al. (2016) shows that an exponential regression is more suitable to explain the dependency

between default probability and premium. In the following chapters, we use the exponential regression

because of two reasons. First, the amount of examined default probabilities is higher in Zimmer et al.

(2016) than in Zimmer et al. (2009). Second, the interval between the analyzed default probabilities

is equal in Zimmer et al. (2016). More precisely, the default probability increases by 1 percent per

investigated level. In contrast, the examined default probability jumps in Zimmer et al. (2009) between

0, 0.3, or 4.9 percent. This non-linear default probability development impedes to indicate the actual

willingness to pay for policyholders. Our exponential regression is based on the results of the mean

premium

πmean(DPij) = exp (−23.75 ·DPij). (3)

This implies that for a default probability of zero the premium is equal to 100 percent. However, the

assumption that no default probability underlies is not realistic. The recent financial crisis has shown

that even organizations and financial products with the highest ratings exhibit an inherent default proba-

bility (cf., e.g., Lehman Brothers and collateralized debt obligations (CDOs) (see, e.g., Harrington, 2009;

Brownlees and Engle, 2016)). Figure 1 visualizes the logarithmic regression of Lorson et al. (2012) and

our exponential regression which is derived from Zimmer et al. (2016).
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2.3 Price-Demand Function and Optimal Insurance Premium on the Under-

writing Level

Initially, we analyze the relation between price-demand function and optimal insurance premium on the

underwriting perspective to clarify our basic idea. In this regard, it is important to mention that the

results of an underwriting level are typically non-optimal from insurer’s perspective which we will show

later. Subsequently, we develop a model where the premium is dependent on the default probability DPij

as well as a price-demand function PDF .

We consider a price-demand function of the insurer i and set i to 1 because we analyze in the following

chapter the asset liability model of one specific insurance company. Including this notation, ensuing

Gatzert et al. (2012) as well as Einav and Finkelstein (2011), at first a linear price-demand function is in

focus to clarify our approach. Afterwards, we extend the model to non-linearity (see, e.g., Zimmer et al.,

2016; Caginalp, 2005). The price-demand function exhibits the following form

πPDF (

n∑
j=1

x1j) = πr − θ ·
n∑

j=1

x1j , (4)

where πPDF (
∑k

j=1 x1j) = 0 and k ≥ n.

Furthermore, πr is the reservation price,
∑n

j=1 x1j the demand, where n represents the number of

demanders, and θ determines the negative slope of the graph which remains constant. The expected cost

function

E(c(

n∑
j=1

x1j)) = πa (5)

is not influenced by the number of insurance contracts and describes which premium is needed to com-

pensate the expected costs of insurance (see also Gatzert et al., 2012). Hence, we consider risks which

are homogeneous in respect to their distribution function. Let us in the first step maximize the expected

underwriting profit E(Pr) which can be generated through the premium-cost relation. Derived from the

current economic situation, we suppose a risk-free interest rate of zero. With xN :=
∑n

j=1 x1j , optimal

demand xopt and optimal premium πopt can be determined through

δE(Pr(x
N ))

δxN
=

δ(πPDF (xN ) · xN )

δxN
− δ(E(c(xN )) · xN )

δxN

!
= 0. (6)

Thus, the optimal point is

xopt =
πr − πa

2θ
; πopt = πr − θ

πr − πa

2θ
=

πr + πa

2
(7)

and this is a maximum for θ > 0 because δ2E(Pr(x
N ))

δ2xN < 0. However, in the linear case the optimal

premium-demand combination does only enable to realize 50 percent of the potential expected underwrit-

ing profit
∫ xS

0
E(Pr(x

N ))dxN , where xS is the point of intersection between πPDF (xN ) and E(c(xN )).
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This insight is independent of θ and holds for πr > πa. Theoretically, it would be optimal to adapt

the premium continuously to the demand quantity to reach the whole integral between πPDF (xN ) and

E(c(xN )).2 However, a continuous premium adaptation is not realistic in practice.3 Nevertheless, it is

possible to increase the total expected underwriting profit in consequence of using heterogeneous pre-

miums.4 For instance, when an insurer chooses the right two additional premiums, the total expected

underwriting profit increases by 50 percent. The two additional premiums are determined as follows:

πhigh =
πr +

πr+πa

2

2
; πlow =

πr+πa

2 + πa

2
. (8)

As a result of the linearity, the additional expected underwriting profit which results from πhigh and

πlow is equal. The following formula describes the dependency between expected underwriting profit and

heterogeneous premiums which maximize E(P total
r )

E(P total
r ) = E(P opt

r ) +

m∑
l=1

βl · (
1

4
)l · E(P opt

r ), (9)

where βl can exhibit values from 0 to 2l. βl increases until 2l before l raises by 1. Heterogeneous

premium levels are πlevel = 1 +
∑m

l=1 βl. Figure 2 visualizes how much of the potential underwriting

profit can be generated through introducing different premium levels.

Figure 2: Underwriting Profit and Premium Levels

The idea behind is to absorb the willingness to pay a certain premium. From a perspective of per-

fect competition, such an increase of the potential profit is impossible. However, imperfect information

restricts the degree of competition in the insurance market (see also Rothschild and Stiglitz, 1976). An in-

formation asynchronicity (asymmetry over time) can either result from the market side, e.g., market access

2Such a process is also known as price discrimination (see, e.g., Pindyck and Rubinfeld, 2008).
3Continuous premium adaptation typically reduces the acceptance of policyholders, induces reputational risks, additional
transaction costs, and may not be achievable because of regulatory requirements.

4The pertinent literature considers heterogeneous costumers and beliefs in the context of asset pricing and strives for equi-
librium models (see, e.g., Constantinides and Duffie, 1996; Brav et al., 2002; Basak, 2005). Moreover, Crocker and Snow
(2013) examine risk classification with heterogeneous agents.
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or intransparent markets, or the insurer-costumer relationship, e.g., various risk attitude of individuals5

(see also Tversky and Wakker, 1995; Ellsberg, 1961), an adverse selection (see Rothschild and Stiglitz,

1997) or moral hazard (see Holmström, 1979), and leads to a heterogeneous willingness to pay. For in-

stance, Zimmer et al. (2016) demonstrate that a heterogeneous willingness to pay premium is omnipresent

and thus should be implemented from the insurer’s point of view to maximize profits.

2.4 Interaction between Default Probability, Price-Demand Function, and

Insurance Pricing

After we have analyzed the relation between default probability and premium as well as price-demand

function and optimal premium, in a next step, both examinations will be combined. With DPA :=
1
z ·

∑z
j=1 DP1j , π

PDF
mean is described as

πPDF
mean(DPA, xN ) = (πr − θ · xN ) · exp (−23.75 ·DPA), (10)

where πPDF
mean is monotonically decreasing in DPA because DPA ∈ (0, 1]. Thus, the optimal point is

xopt
∗ =

exp (−23.75 ·DPA) · πr − πa

2θ · exp(−23.75 ·DPA)
; (11)

πopt
∗ =

exp(−23.75 ·DPA) · πr + πa

2
. (12)

The optimal premium and demand with default probability are smaller than without default proba-

bility πopt
∗ < πopt ; xopt

∗ < xopt. Therefore, it is important to consider the default probability in regard

to optimal premium. Moreover, price-demand function as well as default probability are necessary to

understand the behavior of policyholders adequately. Our previous analysis clarifies that the premium

is not a constant factor which is ex ante given (like it is considered, e.g., in Kahane (1977) as well as

Kahane and Nye (1975)). In the next chapter, we will implement the insights according to the depen-

dency between premium, default probability, and price-demand function in an asset liability framework

to emphasize the necessity in the context of risk and insurance management.

5For instance, the risk preference of individuals varies with the underlying degree of uncertainty (see also
Tversky and Wakker, 1995; Ellsberg, 1961) and intrapersonal.
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3 Asset Liability Model Framework

For our analysis, we develop a one-period, non-life model which includes assetsAt(DPA, xN ) and liabilities

Lt(DPA, xN ) to derive the equity capital ECt(DPA, xN ). Including the fact that our model is generated

for one-period, the following relation results when taking the limited liabilities of the shareholders into

account

EC1(DPA, xN ) = max(A1(DPA, xN )− L1(DPA, xN ), 0). (13)

A1(DPA, xN ) is the stochastic value of assets at point of time 1, where it stems from the product of

assets at point of time 0 and the value change between t = 0 and t = 1. Given a complete and frictionless

capital market, we have with

PV (A1(DPA, xN )) = A0(DPA, xN );PV (L1(DPA, xN )) = L0(DPA, xN ) (14)

a market equilibrium, where PV (L1(DPA, xN )) stands for the present value of the liabilities (stochas-

tic in t = 1). The initial capital A0(DPA, xN ) is subdivided in the equity capital EC0 as well as the

premium πPDF
mean(DPA, xN ) · xN at t = 0:

A0(DPA, xN ) = EC0 + πPDF
mean(DPA, xN ) · xN . (15)

This equation holds for the case that one premium level exists. We will later implement heterogeneous

premiums. Our model extends the ideas of Eckert and Gatzert (2017) and assumes that the willingness

to pay is affected by a price-demand function too. In general, our premium levels are higher than the risk-

neutral equilibrium premium as a result of the assumed price-demand function. The expected liabilities

E(L1(DPA, xN )) consist of the expected claims of the policyholders E(C1(DPA, xN )) at t = 1:

E(L1(DPA, xN )) = E(C1(DPA, xN )) = E(c1(DPA)) · xN , (16)

where C1(DPA, xN ) denotes the claims of all homogeneous risks. We suppose that E(C1(DPA, xN ))

is monotonically decreasing in DPA. More precisely, when there underlies a probabilistic insurance and

the probability occurs that the insurance does not pay the claims of the policyholder, E(C1(DPA, xN )) is

reduced. According to the price-demand function, we have described the expected cost function E(c(xN ))

as a constant factor in chapter 2. Claims of the policyholders generate costs and thus we define the claims

of the policyholders as costs which have to be considered when selling an insurance contract. However,

such claims are connected with uncertainty. Considering this fact, we define E(C0
1 (DPA, xN )) as the

expected value of the claims for t = 1 from the perspective of t = 0 and furthermore ξ which explains

the difference between the expected claims determined in t = 0 and t = 1. ξ > 0 exhibits an unexpected
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increase of the claims from perspective t = 0 and includes the risk of error which comes from forecasting

and diagnostic risk (see, e.g., Kriele and Wolf, 2014).6 Hence, in formal terms we define

E(C1(DPA, xN )) = E(C0
1 (DPA, xN )) + ξ. (17)

Based on these insights, we follow our previous definition and describe the expected cost (claim)

function E(c1(DPA)) as independent of xN . Furthermore, we take into consideration that the default

probability is influencing the costs. We need an estimation of the claims for t = 1 from the perspective

of t = 0 to calculate which premium might be profitable and which not. As a result of uncertainty, the

threat exists that an estimated profitable premium results in an unprofitable case.

In a next step, we introduce our option pricing framework. The values of assets At(DPA, xN ) and

liabilities Lt(DPA, xN ) follow geometric Brownian motions. Under a real-world probability measure P

assets and liabilities are denoted by

dAt(DPA, xN ) = µAAt(DPA, xN )dt+ σAAt(DPA, xN )dWP
At
,

dLt(DPA, xN ) = µLLt(DPA, xN )dt+ σLLt(DPA, xN )dWP
Lt
, (18)

where the Wiener processes are correlated with dWP
At
dWP

Lt
= ρdt. µA and µL describe the drifts,

while σA and σL determine the volatility of the stochastic processes. We further consider a risk-neutral

martingale Q which leads to the fact that the drifts are described by the risk-free interest rate r. For the

sake of simplicity, we assume that under the real-world probability measure P the drift is equal to the

drift under Q (risk-neutral market). At time t = 1, we reach the following solutions for the stochastic

differential equations under Q (see, e.g., Björk, 2009)

A1(DPA, xN ) = A0(DPA, xN ) · exp[r − σ2
A/2 + σA(W

Q
A1

−WQ
A0

)],

L1(DPA, xN ) = L0(DPA, xN ) · exp[r − σ2
L/2 + σL(W

Q
L1

−WQ
L0
)], (19)

with E(L1(DPA, xN )) = L0(DPA, xN ) · exp(r).

In this paper, we examine an insurer which maximizes the overall net present value between t = 0

and t = 1. Hence, we receive

argmax
DPA∈(0,1],xN∈N

NPV (EC1(DPA, xN )− EC0),

where

6Forecasting risk is connected with a wrong projection of the data of past to forecast the future, while diagnostic risk leads
to a wrong distribution function, e.g., the distribution function of the past only exhibits an inadequate amount of data or
the environment varies in a way that the distribution changes (e.g., extreme risk). Moreover, ξ focuses on the negative
deviation of the expectations.
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NPV (EC1(DPA, xN )− EC0) = PV (EC1(DPA, xN ))− EC0 (20)

Using the Margrabe-Fischer option pricing formula based on two geometric Brownian motions (see

Margrabe, 1978; Fischer, 1978), derived from equation (13), the present value of the equity capital EC1

is described as follows:

PV (EC1(DPA, xN )) = EQ[exp(−r) max(A1(DPA, xN )− L1(DPA, xN ), 0)]

= A0(DPA, xN ) · Φ(d1)− L0(DPA, xN ) · Φ(d2), (21)

where

d1 =
ln(A0(DPA,xN )

L0(DPA,xN )
) + σ2

2

σ
; d2 = d1 − σ;σ =

√
σ2
A + σ2

L − 2ρ · σA · σL. (22)

Moreover, Φ describes the standard normal distribution function. The idea here is to analyze how

different premiums influence insurer’s overall level. In this context, it is important to mention that

when we consider EQ-conditions, the optimal demand for underwriting net present value maximization

NPV (E(Pr(DPA, xN ))) (premiums minus expected costs, see Appendix A) varies from the optimal de-

mand for overall net present value maximization (without ξ)7 NPV w(EC1(DPA, xN )−EC0). We state

in the Appendix A the detailed net present value formula on the company’s level and the underwriting

profit for linear as well as convex price-demand function which we use to calculate the optimal demand

numerically. Furthermore, we show in the Appendix A that EC0 induces the deviation of the net present

value calculation and hence the optimal demand between the overall and underwriting perspective varies.

Thus, the results of a partial model are in general non-optimal from the overall asset liability perspective.

According to insurance practice, we derive the insight that an insurer should not maximize the under-

writing net present value because of the non-optimality. Instead, it should be concentrated on overall net

present value maximization to reach optimality for the insurer. As a result of this insight, we focus in the

following part on the overall perspective. Including the fact that the highest net present value is reached

when the default probability is minimal given the line of reasoning by using the results of Zimmer et al.

(2016), we consider a variation of default probabilities in our analysis and compare between the different

default probabilities how the net present value maximizing parameters of our model change. Furthermore,

the convex price-demand function exhibits the following form

πPDF,con
mean (DPA, xN ) =

πr

η · xN + 1
· exp (−23.75 ·DPA), (23)

where πPDF,con
mean is monotonically decreasing in DPA because DPA ∈ (0, 1].

7The optimal demand is calculated based on the expectations for t = 1 from the point of view of t = 0. Since ξ is only ex
post known, it does not affect the optimal demands from the underwriting and overall perspective, which are determined
in t = 0, but the optimal net present values are influenced.
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Heterogeneous Premiums

In the presented model, we have focused on a homogeneous premium for all insurance costumers. The

optimal premium πopt
OP which can be derived through price-demand function and cost function leads to the

optimal overall net present value under the condition that only one premium is existent. However, as we

have seen in Zimmer et al. (2016), the willingness to pay for a homogeneous insurance product is highly

heterogeneous. This insight is supported by the understanding of imperfect information in the insurance

industry (see, e.g., Rothschild and Stiglitz, 1976, 1997; Holmström, 1979). Based on these findings, we

extend our previous model and introduce different premium levels πlevel. In this context, it is important

to mention that we still strive after optimality. More concretely, each additional premium level is optimal

under the underlying constraints to maximize the overall net present value. For the one premium case,

the optimal aggregated premium is

Πtotal = πopt
OP (DPA, xopt

OP ) · x
opt
OP . (24)

For heterogeneous premiums, the total premium is defined as

Πtotal
∗ =

h∑
e=1

∆Π(πlevel
e , xlevel

e ), (25)

where Πtotal
∗ ≥ Πtotal. In the case of heterogeneous premiums, the demand is equal to the sum of the

demand which is generated with different premium levels. As mentioned before, heterogeneous premi-

ums do not only include the chance for reaching higher aggregated premiums. When the expected costs

E(c01(DPA)) are substantially lower than the expected costs E(c1(DPA)), it can happen that the addi-

tional premium level is > E(c01(DPA)) and < E(c1(DPA)). Figure 3 visualizes heterogeneous premiums

(three premium levels) and the underwriting profit under perfect expectations.

Figure 3: Heterogeneous Premiums under Linear and Convex Price-Demand Function
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Constraints

In the next step, we define the constraints under which we consider our asset liability model. According

to our first constraint, we introduce an internal solvency requirement which determines whether a certain

premium level can be realized. The policyholders adapt their willingness to pay to the reported default

probability DPA. Since we regard that the actual default probability has to be smaller or equal than

the reported default probability to protect policyholders and to avoid default probability discrimination,

DPA exhibits an upper bound for the default probability. In other words, when the actual default prob-

ability is smaller or equal than the reported default probability, the solvency constraint is satisfied. Our

solvency requirement under the real-world probability measure P is structured as follows:8

P (A1(DPA, xN ) < L1(DPA, xN )) ≤ DPA, (26)

where

P (
A0(DPA, xN ) · exp[r − σ2

A/2 + σA(W
P
A1

−WP
A0

)]

L0(DPA, xN ) · exp[r − σ2
L/2 + σL(WP

L1
−WP

L0
)]

< 1),

P (exp[σA(W
P
A1

−WP
A0

)− σL(W
P
L1

−WP
L0
) + σ2

L/2− σ2
A/2] <

L0(DPA, xN )

A0(DPA, xN )
),

P (σA(W
P
A1

−WP
A0

)− σL(W
P
L1

−WP
L0
) < ln

(
L0(DPA, xN )

A0(DPA, xN )

)
− σ2

L/2 + σ2
A/2).

With Z:= σA(W
P
A1

−WP
A0

)−σL(W
P
L1

−WP
L0
), Wiener processes which follow N(0,1), and uncorrelated

assets and liabilities, we reach

Φ(
ln(L0(DPA,xN )

A0(DPA,xN )
)− σ2

L/2 + σ2
A/2√

σ2
A + σ2

L

) ≤ DPA. (27)

Equation (27) implies that a high asset-liability-ratio is needed to reach low default probabilities.

In addition, we introduce the constraint that in the homogeneous case the number of premium levels

πlevel is equal to 1 and in the heterogeneous case, the number of premium levels is less or equal 3 (see Fig-

ure 3). We use this constraint to differentiate the heterogeneous case clearly from a continuous premium

adaptation. Besides, we argue that such a continuous premium adaptation is not economically adequate

in consequence of several reasons. First, heterogeneous premium levels lead to classification costs (see,

e.g., Gatzert et al. (2012)). Second, it underlies a reputational risk that policyholders recognize different

premium levels and as a result change the insurance company.

8Note that we set the drifts of the stochastic processes under the real-probability measure P equal to r.
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Excursus: Remarks in Respect to a Normative Price-Demand Function

Our previous considerations clarify for the assumed relation between default probability and willing-

ness to pay that an insurance company is striving for a default probability of zero. In a next step, we will

analyze whether for the normative price-demand function the insurer exhibits the incentive to reach the

lowest reported default probability as possible if policyholders cannot replicate future cash-flows and thus

are paying under perfect expectations more than the fair price for their insurance contract. We consider

an application of the hybrid model with risk-averse policyholders (a > 0). The function is structured as

follows (see, e.g., Rymaszewski et al., 2012):

ϕ(w1) = E(w1)−
a

2
σ2(w1), (28)

where E(w1) denotes the expected wealth of the policyholder in t = 1 and σ2(w1) the variance of

the wealth in t = 1. Under a full coverage of the claims, setting the wealth without insurance ϕ(w1)
NI

equal to the wealth with insurance ϕ(w1)
I , we derive the following relation for the premium π which is

independent of the initial wealth

π = E(c) +
a

2
σ2(c). (29)

E(c) represents the expected claims and σ2(c) the variance of the claims for the non-default case.

Moreover, with a raising a the willingness to pay increases. The policyholder with the highest willingness

to pay exhibits a risk parameter of a1 and the policyholder with the second highest willingness to pay is

described by a2. Assuming linearity for the risk parameter, we can determine a normative price-demand

function with these two points. Thus, in formal terms we reach

π = E(c) +
a1
2
σ2(c)− (

a1
2

− a2
2
)σ2(c)(xN − 1). (30)

Based on our comprehensive numerical computations, we analyze how the overall net present value

changes by a default probability affected standard deviation under stable risk attitudes. Therefore, we

examine two effects which influence the overall net present value (see equation (21)). Φ(d1) and Φ(d2)

vary by the default probability since the ratio of assets and liabilities changes and furthermore assets

minus liabilities are also influenced. With σ2(c(DPA)) = σ2(c(1−DPA)) = σ2(c)(1−DPA)2, we reach

for a given demand

A0(DPA)

L0(DPA)
=

EC0 + xN (E(c)(1−DPA) + a1

2 σ2(c)(1−DPA)2 − (a1

2 − a2

2 )σ2(c)(1−DPA)2(xN − 1))

xNE(c)(1−DPA)

=
EC0

xNE(c)(1−DPA)
+ 1 +

(a1

2 − (a1

2 − a2

2 )(xN − 1))σ2(c)(1−DPA)2

E(c)(1−DPA)
. (31)

Since
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EC0

xNE(c)(1−DPA)
>

EC0

xNE(c)

and

(a1

2 − (a1

2 − a2

2 )(xN − 1))σ2(c)(1−DPA)2

E(c)(1−DPA)
<

(a1

2 − (a1

2 − a2

2 )(xN − 1))σ2(c)

E(c)
(32)

A0

L0
can be smaller, greater, or equal than A0(DPA)

L0(DPA)
depending on the effects. Moreover, the reservation

price is reduced by E(c)DPA +(a1 − a2

2 )(σ2(c)− σ2(c)(1−DPA)2) and the expected claims decrease by

E(c)DPA, while the maximal demand, which can be sold for the intersection point between costs and

price-demand function, remains constant. Thus, when we maximize A0 − L0 > A0(DPA)− L0(DPA).

Φ(d1) − Φ(d2) can be greater, smaller, and equal to Φ(d1(DPA)) − Φ(d2(DPA)) depending on

the available relation between assets and liabilities (see also Appendix B). Only if Φ(d1) − Φ(d2) <

Φ(d1(DPA)) − Φ(d2(DPA)) the net present value under default relatively improves to the net present

value under non-default, while A0−L0 > A0(DPA)−L0(DPA) leads to a higher net present value under

non-default. It results a trade-off between both effects. Although we reach for all our numerical com-

putations that NPV(non-default) > NPV (default), we cannot exclude that for at least one combination

NPV (default) > NPV(non-default) might be possible.

4 Numerical Example

4.1 Scenario under Perfect Expectations

In the following chapter, we want to give additional insights to the model by means of different numerical

examples. We vary the one year reported default probability (0.01, 0.5, 1 percent), premium levels (1,

2, 3), price-demand function (linear, non-linear (convex)), and the scenario (perfect expectations, cost

shift). According to the default probabilities, since there does not underlie a default-free insurer in prac-

tice, we consider a reported default probability of 0.01 percent, include the maximal default probability

under Solvency II (VaR confidence interval of 99.5 percent) (see, e.g., Braun et al., 2017), and a higher

default probability in contrast to the others.

Input Parameters

At first, we describe a scenario with perfect expectations which means that the expected claims (from

perspective of t = 0) E(C0
1 (DPA)) (which represent the costs) do not deviate from the expected claims

E(C1(DPA)). In other words, for this scenario ξ = 0 and the environment is stable.9 According to the

9Time stability exists which assumes that fundamental conditions of the world do not or only slightly change over time.
Thus, “the past is a statistically reliable, and hence unbiased, guide to the future” (which is the definition for objective
probability by Davidson) (Davidson, 1991, p.131). We will show in the scenario under cost shift why such an assumption
can be critical for insurance companies.
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empirical data, we mainly refer to Eling et al. (2009) and Zimmer et al. (2016) but also include other

data to enable comprehensive computations. Eling et al. (2009) consider a German non-life insurance

company which is medium-sized and focuses on automobile as well as property-casualty insurance. In

the numerical example of Eling et al. (2009), the stochastic claims of the policyholders after reinsurance

are e1.171 billion. Due to the fact that we include a price-demand function in our model, we do not

regard the total claims as fixed. Instead, it is increasing with a higher demand and decreasing with lower

demand. Furthermore, we set the actuarially fair premium πa, which is needed to compensate the costs of

insurance, as e1000 per contract. Zimmer et al. (2016) show in their study that the maximum willingness

to pay πr is more than factor 5 of the fair premium. In contrast, we calculate more defensive and take

factor 3 (e3000) as the maximum willingness to pay (non-default case). In the regard that the under-

lying insurance company is selling the contract for the optimal premium πopt under underwriting profit

maximization, xopt = 1.171 million because the costs per contract are e1000. As a result of linearity of

the price-demand function, θ is 8.5397 · 10−4. Moreover, the equity capital at t = 0 is 1.25 billion. We

further consider a correlation between the Wiener processes of zero. In addition, the standard deviation

of the stochastic asset process is assumed as 0.05 and the standard deviation of the liability process as 0.4.

Derived from the current economic situation, the risk-free interest rate is set to zero. Table 2 visualizes

the input parameters.

Table 2: Input Parameters for the Perfect Expectation Scenario

Default probability in (%) DPA 0.01, 0.5, 1

Price-demand function (default case) πPDF
mean(DPA, xN

∗ )
(3000− 8.5397 · 10−4 · xN

∗ )

· exp (−23.75 ·DPA)

Premium levels πlevel 1,2,3

Equity capital EC0 1.25 billion

Expected fair premium πa = E(c01(DPA)) 1000 · (1−DPA)

Correlation between Wiener processes ρ 0

Deviation between expected claims over time ξ 0

Standard deviation of the

stochastic liability process
σL 0.4

Standard deviation of the

stochastic asset process
σA 0.05

Risk-free interest rate µA = µL = r 0

Note: For πlevel= 1, xN
∗ and xN are equal. When πlevel is two or three, xN

∗ = xlevel
e , where e = 1, 2, 3 (see Figure 3).

In contrast, xN is the sum of the demand which is realized with different premium levels.

Linear Price-Demand Function

At first, we underlie a linear price-demand function which is illustrated in Table 2. Afterwards, we

also consider a convex price-demand function and compare the results. Subsequently, we will focus on

the solvency constraint. Under perfect expectations ξ = 0, which means that the expected costs per xN
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never exceed the premium. We numerically determine the optimal demands for different premium levels

under EQ-conditions and overall net present value maximization. Table 3 clarifies that a raise of default

probability reduces the net present value substantially. For the one-premium case, between 0.01 and 1

(0.5) percent default probability, the optimal premium decreases by 15.99 (8.36) percent. In addition, for

the same relation the net present value is even reduced by 39.68 (21.18) percent. This results from the

fact that an increasing default probability decreases the willingness to pay as well as the demand simul-

taneously. Furthermore, for a scenario under perfect expectations, an increase of the number of premium

levels raises the net present value substantially. Besides, it is possible to overcompensate 0.5 percent

default probability when choosing the right premium levels. For instance, comparing one-premium and

three-premium level, for 0.01 (0.5; 1) percent default probability the net present value increases by 49.79

(50.22; 51.31) percent. Hence, the results of our model are close to the theoretical considerations of

Figure 2. Figure 4 visualizes the net present value which is influenced by default probability and hetero-

geneous premiums.

Table 3: Linear Case: Net Present Value in Dependency of Default Probability and Premium

πlevel DPA (in %) Premium xN (in mio) Φ(d1) Φ(d2) NPV (EC1 − EC0) (in mio)

1 0.01 1994.40 1.172 0.9985 0.9950 1166.23

2 0.01
1994.40

1491.76

1.172

0.590
0.9940 0.9824 1459.73

3 0.01

2493.64

1994.40

1491.76

0.586

0.586

0.590

0.9962 0.9882 1746.91

1 0.5 1827.63 1.103 0.9982 0.9939 919.17

2 0.5
1827.63

1404.47

1.103

0.558
0.9923 0.9784 1151.57

3 0.5

2245.86

1827.63

1404.47

0.5515

0.5515

0.558

0.9948 0.9846 1380.75

1 1 1675.52 1.025 0.9979 0.9931 703.48

2 1
1675.52

1324.66

1.025

0.521
0.9909 0.9750 882.13

3 1

2020.65

1675.52

1324.66

0.5215

0.5215

0.521

0.9936 0.9816 1064.44

For the examined default probabilities, optimal demand for underwriting net present value maximiza-

tion at most varies from optimal demand under overall net present value maximization by 5.37 percent.

Underwriting net present value maximization refers to the relation of premiums minus expected costs (see

Appendix A). An overall perspective for an insurer is necessary to sell the optimal quantity. Moreover,
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Φ(d1) and Φ(d2) decrease with a higher default probability and a lower premium adaptation πlow, while

both increase when a higher premium adaptation πhigh underlies. In addition, the gap between Φ(d1)

and Φ(d2) increases with a lower premium adaptation. Therefore, a lower premium adaptation leads

to a higher net present value than higher premium adaptation (e.g., according to 0.01 percent default

probability, e1491.76 results in a higher net present value than e2493.64).

Figure 4: Linear PDF under Perfect Expectations: NPV and Premium Levels

Convex Price-Demand Function

In the pertinent literature is often assumed a linear price-demand function (see, e.g., Gatzert et al.,

2012; Einav and Finkelstein, 2011). In contrast, Zimmer et al. (2016) show in their empirical analysis

that a convex function describes the relation between premium and demand appropriately. Hence, we

consider in the following part a convex price-demand function which is defined in equation (23) and com-

pare the results with the linear case. With πr, πa, and the maximal demand (twice the optimal demand

in the linear case under underwriting profit maximization), which we have determined in the previous

subchapter, we develop a convex price-demand function and receive η = 8.5397 ·10−7. As a result, πr, πa,

and maximal demand are equal for the linear and convex price-demand function. Furthermore, in conse-

quence of these identical points and the convexity,
∫ xS

0
E(Pr,convex(x

N ))dxN <
∫ xS

0
E(Pr,linear(x

N ))dxN

and xopt
convex < xopt

linear as well as πopt
convex < πopt

linear (one-premium case). For three premiums, a lower and

a higher premium adaptation are still optimal.

Table 4 clarifies the outcome under a convex price-demand function. In contrast to the linear case, as

a result of convexity, the interval between different premium levels varies substantially. For instance, the

interval between optimal premium (one-premium case) and πlow is enormously lower than the interval

between optimal premium (one-premium case) and πhigh. Moreover, the demand of πlow is higher than
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the demand of the other premiums (three-premium case). We will see in the next subchapter that the

higher quantity of πlow is increasing the vulnerability against raising claims. Concerning one-premium

case, between 0.01 and 1 (0.5) percent default probability, optimal premium decreases by 11.44 (5.83)

percent and the net present value by 44.67 (24.42) percent. Hence, the relative net present value re-

duction is even higher than in the linear case, although the relative reduction of the optimal premium

is lower. Under a default probability of 0.01 percent, comparing one-premium and three-premium level,

the net present value increases by 65.03 percent. Moreover, for 0.5 (1) percent default probability the

net present value raises by 63.47 (61.86) percent between one-premium and three-premium level. This is

more than in the linear case. With a higher default probability, Φ(d1) and Φ(d2) increase since the ratio

of asset and liabilities raises. In addition, considering the examined default probabilities, optimal demand

for underwriting net present value maximization at most differs from optimal demand under overall net

present value maximization by 18.75 percent. As a result of convexity, the impact of EC0 is stronger than

in the linear case. Figure 5 visualizes the development of net present value with heterogeneous premiums

and default probability.

Table 4: Convex Case: Net Present Value in Dependency of Default Probability and Premium

πlevel DPA (in %) Premium xN (in mio) Φ(d1) Φ(d2) NPV (EC1 − EC0) (in mio)

1 0.01 1727.29 0.858 0.9989 0.9962 624.46

2 0.01
1727.29

1302.85

0.858

0.661
0.9903 0.9735 829.77

3 0.01

2274.28

1727.29

1302.85

0.370

0.488

0.661

0.9933 0.9808 1030.52

1 0.5 1626.51 0.747 0.9993 0.9972 471.96

2 0.5
1626.51

1263.02

0.747

0.552
0.9923 0.9782 623.39

3 0.5

2081.15

1626.51

1263.02

0.328

0.419

0.552

0.9944 0.9835 771.53

1 1 1529.73 0.640 0.9996 0.9982 345.54

2 1
1529.73

1224.19

0.640

0.452
0.9946 0.9840 453.49

3 1

1902.71

1529.73

1224.19

0.285

0.355

0.452

0.9959 0.9873 559.28

For the linear as well as the convex case, Φ(d1) and Φ(d2) are close to zero as a result of the high

asset-liability-ratio which is necessary to be able to fulfill the solvency constraint. For the cost shift, the
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difference between Φ(d1) and Φ(d2) increases and hence affects the net present value.

Figure 5: Convex PDP under Perfect Expectations: NPV and Premium Levels

4.2 Scenario under Cost Shift

In this subchapter, we will focus on a scenario under cost shift. In the scenario under perfect expectations,

we have described the situation as stable over time. Hence, the past can be used as guide for the future.

However, our business world and its environment are changing rapidly. Therefore, the future is widely

unstable. We analyze how wrong estimations of the expected costs influence our asset liability model.

Thus, we underlie a deterministic shift of the costs and examine the effect on the net present value of

heterogeneous premiums. We assume that the deterministic shift ξ is increasing the costs per xN by 50

percent. All other input parameters remain the same as before.

Linear Price-Demand Function

At first, we analyze how the net present value is affected by the deviation of the expected claims and af-

terwards we take the solvency requirement into consideration. Figure 6 clarifies how the net present value

is influenced by the change of the costs in dependency of default probability and premium level. For the

two-premium level, we consider both the higher and lower premium adaptation. Instead, in Figure 4, we

focused on the one which results in the higher net present value. In the case under perfect expectations,

the net present value of higher and lower additional premium varies only slightly. In contrast, in this case,

we want to illustrate that choosing a different premium level is affecting the net present value substantially.
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Figure 6: Linear PDF under Cost Shift: NPV and Premium Levels

As a result of increasing claims, it is intuitive that each insurance contract, which is sold below such

claims, is connected with a decline of net present value. However, considering this relation, at first glance

it might be surprising that even a lower premium adaptation where πlow < E(c1(DPA)) results in our

analysis in a higher net present value for a default probability of 0.01 (0.5) percent. We can explain

this development with the difference between Φ(d1) and Φ(d2). For σ > 0, Φ(d1) is greater than Φ(d2)

and hence the assets are stronger weighted than the liabilities.10 Moreover, a lower premium adaptation

increases the gap between Φ(d1) and Φ(d2). Hence, as illustrated in Figure 6, the raising gap between

Φ(d1) and Φ(d2) overcompensates πlow < E(c1(DPA)). Nevertheless, this relation does not necessar-

ily underlie. With an increasing σ and a lower ratio of A0(DPA,xN )
L0(DPA,xN )

, the difference between Φ(d1) and

Φ(d2) raises and vice versa (see Appendix B). Furthermore, we recognize for a default probability of

0.5 percent, although both two-premium levels lead to a higher net present value than a homogeneous

premium, three premiums are worse than two-premium level (high). This effect is induced by the in-

creasing asset-liability-ratio in comparison to the two-premium level (low). Under 0.01 (0.5, 1) percent

default probability, choosing the higher premium adaptation for the two-premium level is connected with

a positive deviation of the net present value in relation to the lower premium adaptation by 245.15

(222.99, 202.01) million. Besides, three-premium level is the best alternative for a default probability of

0.01 percent and for 0.5 (1) percent default probability, the higher premium adaptation should be realized.

Convex Price-Demand Function

The net present value deviation under 0.01 (0.5, 1) percent default probability between πhigh and πlow is

264.87 (226.30, 191.49) million and decreases with higher default probability. In addition, for a convex

10For a very low standard deviation, Φ(d1) and Φ(d2) are approximately equal (see Appendix B).

21



price-demand function, πlow generates higher demand under stable conditions than higher premium lev-

els (three-premium case). Hence, a lower premium adaptation is under a convex price-demand function

riskier than under a linear price-demand function and leads to a higher vulnerability against increasing

costs. We reach for 1 percent default probability and a lower premium adaptation a negative net present

value. πhigh consequently leads to the best results under cost shift. Figure 7 illustrates that it is pos-

sible to overcompensate 0.5 percent default probability when choosing the right heterogeneous premiums.

Figure 7: Convex PDF under Cost Shift: NPV and Premium Levels

In summary, the underlying example and the implications clarify that under EQ-conditions hetero-

geneous premiums improve the net present value when perfect expectations underlie and are resilient

against a cost shift when choosing the right heterogeneous premiums.

The following inherent problem underlies for net present value maximizing insurance enterprises. In

our scenario under perfect expectations, an additional lower premium πlow leads to a higher net present

value than an additional higher premium πhigh. Hence, if only two-premium levels are feasible, each in-

surer has the incentive to realize the additional lower premium. However, this premium is connected with

the risk that the conditions change to a scenario under cost shift and thus a higher premium adaptation

would be substantially better. When one insurance enterprise decides to ignore the potential risk of lower

premiums and realizes the profit, there would emerge a competitive advantage for this company as long

as perfect expectations are present. In consequence, all other insurance companies are driven to do the

same to strengthen the own market position relative to others. However, when the scenario switches from

perfect expectations to cost shift and the market participants are behaving as illustrated, an unfavorable
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outcome results. This theoretical structure of action is known as a prisoner’s dilemma11(see Nash, 1951).

Solvency Requirement

As we have demonstrated, a higher default probability reduces the net present value substantially under

the assumptions taken in this paper. However, a solvency requirement, as presented in this paper, is

useful to minimize the possibility that the actual default probability is higher than the reported default

probability. In fact, solvency requirements restrict the risky behavior of an insurance company and enable

that an insurance enterprise finds an appropriate balance between return and risk. Thus, the costumers

are protected as a result of the constraints (see also Eling et al., 2007). Apart from this theoretical use of

solvency requirements, we will consider in a next step whether our solvency constraint is fulfilled under

perfect expectations and for the cost shift. In this context, we emphasize that a deviation between the

expectations of claims over time is critical for the usefulness of solvency requirements. We visualize the

reported default probabilities and the actual default probabilities in the following tables. If the reported

default probability DPA is smaller than the actual default probability in the linear (convex) case DP lin

(DP con), the solvency requirement is violated.

Table 5: Perfect Expectations: Reported and Actual Default Probability in Percent

πlevel 1 2(high) 2(low) 3 1 2(high) 2(low) 3 1 2(high) 2(low) 3

DPA 0.01 0.01 0.01 0.01 0.5 0.5 0.5 0.5 1 1 1 1

DP lin 0.15 0.08 0.61 0.39 0.19 0.11 0.78 0.53 0.21 0.13 0.92 0.65

DP con 0.11 0.06 0.99 0.68 0.08 0.05 0.79 0.57 0.05 0.03 0.55 0.42

Table 6: Cost Shift: Reported and Actual Default Probability in Percent

πlevel 1 2(high) 2(low) 3 1 2(high) 2(low) 3 1 2(high) 2(low) 3

DPA 0.01 0.01 0.01 0.01 0.5 0.5 0.5 0.5 1 1 1 1

DP lin 2.47 1.54 6.71 4.92 2.91 1.95 7.89 6.06 3.21 2.30 8.84 6.96

DP con 1.96 1.25 9.25 7.19 1.52 1.05 7.94 6.38 1.04 0.76 6.24 5.18

Derived from Table 5, we receive that the solvency constraint is not fulfilled for the reported de-

fault probability of 0.01 percent under linear as well as convex price-demand function. Moreover, several

lower premium adaptations and three-premium level also do not satisfy the constraint. Hence, the lower

premium adaptation shows a higher vulnerability concerning the solvency constraint. Our solvency con-

straint exhibits a strong focus on the inherent threat of lower premium adaptation. For the cost shift,

only under 1 percent default probability, the convex case satisfies the constraint for the higher premium

adaptation. In all other cases, the solvency requirement is violated. A positive aspect which we derive

11A prisoner’s dilemma stems from the non-cooperative behavior of market participants and collectively leads to an inap-
propriate outcome (see Nash, 1951).
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is that solvency requirements restrict the risk to a certain degree and define a solid maximal default

probability.

However, when we consider that the expected costs in t = 1 are not known from the point of time t = 0,

the information that several premium-default combinations are not in line with the solvency condition is

not influencing the previous decisions of the insurer in t = 0. The decision of the insurer bases on the

expectation about the costs in t = 1 from the point of view of t = 0. Hence, only the default probability

premium combinations, which are in conflict with the solvency constraint from the perspective of t = 0,

affect the insurer’s behavior. This insight clarifies that an unexpected shock is influencing the costs of

the insurance company, while the solvency constraint does not have an appropriate answer because it is

based on the expectation of t = 0. Of course, the future is only to a certain degree predictable. Therefore,

a deviation between expectations is possible and probable. Including this fact in an internal solvency

framework, stress-testing is an appropriate tool to analyze a miscalculation of distribution parameters.

False estimations of costs are often induced by external impacts, e.g., natural disasters (see, e.g.,

Lewis and Murdock, 1996; Harrington, 2009), political risks (see, e.g., Braun and Fischer, 2016; MIGA,

2014), or cyber attacks (see, e.g., World Economic Forum, 2016; Biener et al., 2015). Thus, it is im-

portant to develop an integrated approach, which includes the external development, such as a market

analysis, in the internal solvency considerations. Furthermore, it is necessary to develop early warning

systems (see, e.g., Brockett et al., 1994) and directly implement changes of the business environment

in the solvency constraints to minimize miscalculations. Moreover, forward looking models, which an-

ticipate future outcomes and focus on liability risk drivers, should be implicated (see SwissRe, 2016).

Nevertheless, solvency requirements are still a framework of action which does not guarantee a successful

development of an insurance enterprise. In addition, for instance, loss reserves (see, e.g., Dus and Maurer,

2001) are necessary to be able to pay the claims in t = 1, but an increase of loss reserves over a level,

which is defined by the solvency constraint, to compensate a potential raise of claims, does not solve the

problem of uncertainty and also leads to a lockup of more capital than needed under perfect expectations.

Instead, it is more senseful to focus on the origins of deviations between expected costs in t = 0 and t = 1.

In summary, we have shown in our numerical example that the net present value is decreasing sub-

stantially with a higher default probability. Under perfect expectations heterogeneous premiums can

compensate such a net present value reduction to a certain degree and thus heterogeneous premiums are

profitable under stable conditions. When a cost shift underlies, a higher premium adaptation still im-

proves the net present value, where a lower premium adaptation is only beneficial when premium greater

costs or πlow < E(c1(DPA)) is overcompensated by the difference of Φ(d1) and Φ(d2). Solvency require-

ments define a solid maximum of default probability, however, in dynamic environments it is possible

that the expected claims (based on the past), which are part of the solvency constraint, do not represent

the reality. Hence, the solvency requirement does not or only delayingly protect for dramatic changes.
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5 Economic Implications

5.1 Default Probability: Immanent Threat or Potential for Insurance Com-

panies?

As we have defined before, a probabilistic insurance can either be induced by the insurance company

itself, which sells insurance contracts with a payoff probability of lower than one, or an inherent default

probability (e.g., caused by systemic risks) results in a probabilistic insurance. Our previous analysis

clarifies that the risk-averse behavior of policyholders does not provide an incentive for the insurance

company to structure insurance contracts in a way that a payoff with lower than one is existent (see also

Wakker et al., 1997; Zimmer et al., 2009, 2016). Therefore, insurance companies always try to minimize

the underlying default probability as a result of the enormous decrease of the willingness to pay of the

policyholders. However, in the systemic financial world an inherent default probability is present and

hence has to be reported. If the policyholders are aware of such a default probability, they typically

adapt their willingness to pay. As we have shown with our numerical example, the potential premium,

which can be generated under default probability, is substantially lower than under non-default. Thus,

a higher default probability reduces the profit that can be reached through insurance contracts. Hence,

an increasing default probability induced, e.g., by unstable conditions under which businesses operate,

depicts an immanent threat for insurance enterprises.

In contrast, our asset liability model also expounds that if a perceived default probability is exis-

tent, there results the potential to improve the premiums in consequence of the high willingness to pay

for a reduction of default probability and striving for certainty (see also Tversky and Kahneman, 1979,

1992). Therefore, for instance, the insurance industry has the incentive to offer additional insurance

contracts which pay in the case when the first insurance contract does not pay the claims. Of course,

also the second insurance exhibits an inherent default probability. Nevertheless, striving for certainty

of the policyholders combined with the high willingness to pay elucidate the profitability of this approach.

In practice, according to the default probability, insurance contracts are very inflexible over time.

More precisely, when there underlies at t = 0 a reported default probability DPA and this default prob-

ability changes over time to DPB , it would be consequent to adapt the premium to DPB . However,

this is not common in the insurance industry, although the default probability represents an important

parameter of the insurance contract. In other words, policyholders gain from a decrease of default proba-

bility over time (after they have signed the contract) and are disadvantaged when the default probability

increases over time (if such changes have not been rightly anticipated by the policyholders). Even if

an insurance contract is not affected by a changing default probability, the behavior of policyholders is

influenced by such a variation. For instance, when the default probability increases over time, some pol-

icyholders intend to switch the insurer as a consequence of a lower willingness to pay for the underlying

default probability.
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5.2 Heterogeneous Premiums: A Way for Customer Centricity

In fact, insurance customers are heterogeneous and heterogeneous customers consequently exhibit a het-

erogeneous willingness to pay even when homogeneous risks underlie (see also Zimmer et al., 2016).

Hence, taking into consideration that such a heterogeneity is omnipresent, because of three reasons, it is

suboptimal for an insurance enterprise to use a homogeneous premium. First, a homogeneous premium

is ignoring the higher willingness to pay of a bundle of customers. Thus, it exists a gap between the

willingness to pay and the actual acquired premium. Second, individuals with a lower willingness to pay

than the homogeneous premium do not have the possibility to buy an insurance contract. Third, which

is derived from the two reasons above, the customer is not in focus. Instead, a decoupling between the

behavior of the customer and the insurance company is present.

In contrast, heterogeneous premiums minimize the gap between higher willingness to pay and actual

acquired premium, enable individuals with a lower willingness to pay to buy the insurance, which results

in a higher demand, and therefore focus on the customer. Hence, heterogeneous premiums lead to a shift

of the mindset of an insurance enterprise. The insurance enterprise is adapting the insurance premium

to the willingness to pay and not policyholder’s willingness to pay to the insurance premium (which is

only possible downwards). As a result, customer centricity enables the insurance company to increase its

profits measured by the net present value. As we have stated before, the customer centricity has to be

within the profitable restrictions under which the business operates.

According to the practicability of heterogeneous premiums in practice, it might be challenging at first

glance. Given a set of different premiums for a homogeneous insurance product, we do not question that

an individual which acts under bounded rationality (see Simon, 1957) prefers the one with the lowest

premium because each individual behaves rationally within his or her limitations. However, we see a

high potential for the practicability which stems from the limitations of each individual combined with

the fact that individuals accept satisfying results (see Simon, 1955). In other words, it is possible for

the insurer to realize premiums which are substantially higher than the fair premium. In combination

with the limitation that no potential policyholder has perfect information, heterogeneous premiums are

applicable. Hence, it results a collective improvement for insurance companies through heterogeneous

premiums. Furthermore, our approach clarifies that no insurance company has an incentive to maximize

the transparency of the insurance market. A higher level of transparency restricts the realization of

heterogeneous premiums and therefore the potential profit. However, when we have a closer look to other

industries, such as food industry12, heterogeneous prices even work when there underlies a high degree

of perceived transparency.

Another point why we hold the view that heterogeneous premiums are possible to implement is the

increasing relevance of the digitization. Each potential policyholder has a digital footprint and such data

are useful to improve the understanding about the consumer behavior and thus the willingness to pay.

12We refer, e.g., to a homogeneous product which is sold in the supermarket for heterogeneous prices, which is very common
in our daily life.
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6 Summary and Conclusion

In this paper, we develop an asset liability model which includes the interaction of default probability,

price-demand function, and insurance premiums. Therefore, we do not consider the premium as a con-

stant factor which is ex ante given and the insurer is not a pure price taker. Instead, different strategies

to generate underwriting profit, from the relation of premiums minus costs, are influencing the overall

net present value of an insurer enormously. In this context, we introduce heterogeneous premiums in

consequence of policyholders’ heterogeneous willingness to pay and compare the results with the outcome

under a homogeneous premium. Furthermore, we separate between higher and lower premium adap-

tion in regard to heterogeneous premiums. Moreover, we include an internal solvency restriction in our

model. The numerical example illustrates the net present value development under homogeneous and

heterogeneous premiums with varying default probabilities when perfect expectations and a cost shift are

underlying.

Our findings include several economic implications. First, an increase of default probability decreases

the willingness to pay substantially and therefore restricts the potential to improve the return on capital.

An inherent default probability is consequently existing as a result of our systemic financial world. From

the initial point that such an inherent default probability is present, policyholders’ striving for certainty

can be regarded as threat but also as potential. While an increase of default probability describes the

threat, taking the high willingness to pay for a default probability reduction into consideration clarifies

the potential. For instance, it results an incentive to offer additional insurance contracts which pay in

the case when the first insurance contract does not pay the claims.

Second, we illustrate that heterogeneous premiums are useful to improve the net present value of an

insurer under linear as well as convex price-demand function. It is inadequate from the perspective of

the insurance company that policyholders adapt their heterogeneous willingness to pay to a homogeneous

premium (which is only downwards possible). Instead, adapting the premium level to the heterogeneous

willingness to pay is appropriate. We further emphasize that such a heterogeneous premium adaptation

is supported by limitations of the customers (e.g., missing information) and the acceptance of satisfying

results. While in our scenario under perfect expectations a higher and lower premium adaptation are

profitable, under cost shift a lower premium adaptation is only profitable when the premium is higher

than the costs or the effect of premium smaller costs is overcompensated by the difference of the standard

normal distribution functions. Moreover, a higher premium adaptation is still beneficial.

Third, we recognize that an internal solvency constraint has to be structured as a forward looking

approach, which anticipates the future to identify liability risk drivers, and to minimize the gap between

cost expectations over time. An integrated approach is in this context useful to combine internal and

external insights. Fourth, the optimal demand under overall net present value maximization varies from

the net present value maximization of an isolated premium minus costs consideration. Hence, in practice,

an overall perspective should be in focus to reach the best results from the company’s point of view.
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7 Appendix

Appendix A: Overall and Underwriting Net Present Value

Linear Price-Demand Function

NPV w(EC1(DPA, xN )− EC0) = PV w(EC1(DPA, xN ))− EC0

= A0(DPA, xN ) · Φ(d1)− Lw
0 (DPA, xN ) · Φ(d2)− EC0

= [EC0 + (πr − θ · xN ) · exp(−23.75 ·DPA) · xN ] · Φ(d1)

− exp(−r)(1−DPA)E(c01) · xN · Φ(d2)− EC0

where

d1 =
ln( A0(DPA,xN )

Lw
0 (DPA,xN )

) + σ2

2

σ
=

ln(EC0+(πr−θ·xN )·exp(−23.75·DPA)·xN

exp(−r)(1−DPA)E(c01)·xN ) + σ2

2

σ
,

d2 = d1 − σ;σ =
√
σ2
A + σ2

L − 2ρ · σA · σL.

NPV (E(Pr(DPA, xN ))) = PV (E(Pr(DPA, xN )))

= (πr − θ · xN ) · exp(−23.75 ·DPA) · xN · Φ(d1)− exp(−r)πa · xN · Φ(d2),

where

πa = (1−DPA)E(c01); d1 =
ln( (πr−θ·xN )·exp(−23.75·DPA)·xN

exp(−r)πa·xN ) + σ2

2

σ

Convex Price-Demand Function

NPV w(EC1(DPA, xN )− EC0) = PV w(EC1(DPA, xN ))− EC0

= A0(DPA, xN ) · Φ(d1)− Lw
0 (DPA, xN ) · Φ(d2)− EC0

= [EC0 +
πr

η · xN + 1
· exp (−23.75 ·DPA) · xN ] · Φ(d1)

− exp(−r)(1−DPA)E(c01) · xN · Φ(d2)− EC0

where

d1 =
ln( A0(DPA,xN )

Lw
0 (DPA,xN )

) + σ2

2

σ
=

ln(
EC0+

πr
η·xN+1

·exp (−23.75·DPA)·xN

exp(−r)(1−DPA)E(c01)·xN ) + σ2

2

σ
.
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NPV (E(Pr(DPA, xN ))) = PV (E(Pr(DPA, xN )))

=
πr

η · xN + 1
· exp (−23.75 ·DPA) · xN · Φ(d1)− exp(−r)πa · xN · Φ(d2),

where

πa = (1−DPA)E(c01); d1 =
ln(

πr
η·xN+1

·exp (−23.75·DPA)·xN

exp(−r)πa·xN ) + σ2

2

σ
.

Appendix B: Standard Normal Distribution, Asset Liability Ratio, and Standard Deviation

Figure 8: Influence of Asset Liability Ratio and Standard Deviation
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