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Abstract

The underwriting “cycle” is an important topic in in-
surance research. We apply a Markov-switching auto-
regressive model to country-level data to test the market
asymmetry proposition predicted by the dynamic frame-
work proposed by Henriet, Klimenko and Rochet (2016).
The method of quasi-maximum likelihood is used to esti-
mate parameters. The model outperforms a simple autore-
gressive model with both lower AIC and lower BIC. Em-
pirical results show that asymmetry of markets does not
exist in that there is no significant difference between the
durations of the soft-market phase and the hard-market
phase, and therefore does not support the asymmetry hy-
pothesis that the soft market lasts longer than the hard
market.
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1 Introduction

Underwriting “cycle” is typically thought of as repeating, regular pe-
riods of the soft market and the hard market in the insurance field
(Weiss, 2007). In the soft market, insurance products are abundant
in supply, and therefore the prices of insurance products stay low.
While in the hard market, insurance products are in short supply,
and prices keeps relatively high. The alternate occurrence of the
the soft market and the hard market gives rise to price fluctuations
in the insurance market, rendering it hard for companies to make
sensible business plans and for regulators to make timely judgment
on the solvency of these companies. The underwriting “cycle” is an
important topic in the scholarly research since its existence contra-
dicts the efficient market hypothesis. Though extensively studied
for more than 30 years, there has not been a consensus on the exact
reason why the “cycle” occurs yet. Cummins and Outreville (1987)
proposed the “arbitrage theory” attributing the ups and downs of
insurance profitability to institutional lags and regulatory require-
ments such as data collection lags, regulatory lags, policy renewal
lags and accounting rules. Therefore, countries with similar insti-
tutional characteristics should have similar underwriting patterns.
Winter (1994) studied this problem from a supply side perspective,
and argued that it is exogenous shocks to the markets that affected
each companies’ capacity level, which further influences profitabil-
ity. Assuming that all insurers should hold enough equity to avoid
insolvency. After raising enough capital, the insurers are able to
issue more products, which drives down the prices. Therefore, dif-
ferent market regimes correlate with different status of companies’
capital levels, and adjacent markets that are hit by the same shocks
should behave similarly.

Using the combined ratio, which is defined as the percentage of
the sum of incurred losses and earned expenses over earned premi-
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ums, and total premium as indicators of the insurance company’s
profitability, current research have been testing the existence and
length of insurance cycles empirically. Figure 1 shows the combined
ratio of US’s insurance industry from 1967 to 2014.

Figure 1: Combined Ratio of Insurance Industry in USA.

It can be seen from the figure that US’s insurance industry has
gone through roughly 6 ups and downs in this time period. The
result is also consistent with existing research, which documents an
estimation of cycle length of 6 to 7 years in US’s insurance industry.
(See Venezian, 1985; Cummins and Outreville, 1987 et al.) The
lengths of insurance cycles varies from 4.7 years as in Australia to
8.7 years as in France. (See Cummins and Outreville, 1987).

Recently, Henriet, Klimenko and Rochet (2016, HKR hereafter)
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combined the arbitrage theory and the capacity constraint theories
into a comprehensive general-equilibrium model, which rationalizes
the dynamics of insurance prices in a competitive insurance mar-
ket with financial frictions. The numerical results of HKR shows
that insurance prices exhibit asymmetric reversals caused by the
reflection of the aggregate capacity process at the dividend and re-
capitalization boundaries rather than true cycles.

This paper aims at testing this asymmetry of the soft- and the
hard-market hypothesis proposed by HKR empirically with country-
level data, which includes US insurance combined ratios and premi-
ums data in the time period of 1967-2014. The dataset is from A.M
Best’s Global Insurance and Banking Database.

Instead of using a simple autoregressive model to characterize
the underwriting cycles as existing research do (see Weiss (2007)
for a review), we apply a Markov-switch autoregressive model to
underwriting-“cycle” analysis. The results show that the model out-
performs a simple autoregressive model with a lower AIC and a
lower BIC. In addition, the model passes robustness checks in terms
of the modeling and the choice of data, further strengthening the
model’s validity. Empirical results show that asymmetry of markets
does not exist in that there is no significant difference between the
durations of the soft- and hard-market phase, and therefore does
not support the asymmetry hypothesis of HKR.

This paper contributes to the underwriting-“cycle” research in
two aspects. Firstly, it is among the first studies that applies a
Markov-switching autoregressive model to underwriting-“cycle” re-
search, and its analysis is more comprehensive and rigorous than
other existing studies. Secondly, the paper empirically tested HKR’s
market asymmetry hypothesis, and found that there is no significant
difference between durations of the soft market and the hard market,
thus does not support HKR’s hypothesis.
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2 Markov-Switching Auto-regressive Models

2.1 Auto-regressive Models

Current research mainly use auto-regressive models for the estima-
tion of insurance cycles. Using AR(2) model, Cummins and Outre-
ville (1987) and Chen et al. (1997) investigated into the insurance
market in US and Asia, and proved the existence of cycles in the two
markets, respectively. Meier(2006) and Meier and Outreville (2006)
extended Cummins and Outreville (1987), and found that insurance
cycles exist in Germany, Switzerland, France, but not in Japan.

On the other hand, Boyer et al. (2012) argued that the param-
eter estimates from AR models do not lead to any such inference
since auto-regressive model puts strong prior conditions. Applying
a number of filters, Boyer et al. (2012) shows that neither does the
cycles exist in the sample of data, nor could the cycles be forecasted
out of sample. However, Boyer et al. (2012) didn’t consider the al-
ternation of soft markets and hard markets, and thus fail to detect
the existence of cycles in the insurance market. Therefore, applying
the Markov-switching auto-regressive model stated in Section 2.2 in
the analysis is necessary.

2.2 Markov-Switching Auto-Regressive Models

The application of Markov-switching models (also known as regime
switching model) in economics starts in Goldfeld and Quandt (1973),
and Hamilton (1989) provides a through analysis of the estimation
of the parameters. The Markov-switching model has been widely
applied in the area of macroeconomic research for the estimation of
GDP, exchange rate, real interest etc. (See Engle and Hamilton,
1990; Garcia and Perron, 1996 et al.) The model is also applied
in finance for modeling stock and bond returns, European option
prices, etc. (See Guidolin and Timmermann, 2006; Buffington and
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Elliott, 2002, etc.). While in the area of insurance studies, the model
is mainly used for insurance product pricing such as Aase (2001) on
catastrophe insurance futures and spreads.

As for insurance cycle modeling, Wang et al. (2011) used a UP
/ DOWN regime switching model to analyze underwriting cycles.
However, the authors simply assigned the data points to each regime
by an ad hoc criteria. The data point is regarded as belonging to
the UP regime if the forward difference Yt � Yt�1 � 0, and to the
DOWN regime otherwise. Two models are fit to data points in the
two regimes, respectively. However, this ad hoc criterion has its
shortcomings as it might take the “noise” as a transition of regimes.
In other words, a tiny variation of the data has the same weight as
a shock as long as the forward difference has the same sign.

In this paper, we apply a bivariate Markov-switching model with
a general AR(k) dynamic structure in the analysis. The model is
defined as below,

zt = ↵0 + ↵1st + �1zt�1 + . . .+ �kzt�k + "t, (1)

where st = 0, 1 are the Markovian state variables, representing
the soft market and hard market, respectively. "t are i.i.d. random
variables with mean 0 and variance �2

" . Denote the transition matrix
of st as Pt as below,

P =

"
P (st = 0|st�1 = 0) P (st = 1|st�1 = 0)

P (st = 1|st�1 = 0) P (st = 1|st�1 = 1)

#
=

"
p00 p01

p10 p11

#
(2)

Since p00 + p01 = 1 and p10 + p11 = 0, the transition matrix can
be simplified as below,

P =

2

4 p00 1� p00

1� p11 p11

3

5 (3)

The transition matrix P (t) can be time-dependent. Here we only
consider constant transition matrix for simplicity.
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2.3 Model Estimation

In this paper, we apply a quasi-maximum likelihood estimation
(QMLE) method for parameter estimation following Hamilton (1989)
and Kim and Nelson (1999). As for Eq. (1), the vector of parameters
can be denoted as,

✓ = (p00, p11,↵0,↵1, �", �1, �2 . . . �k) (4)

Let Z t
= {zt, zt�1, . . . z1} be the information set at time t which

contains all the observed variables up to time t. Under the normality
assumption, the density of zt conditional on Z t�1 and st = i (i =
0, 1) is

f(zt|st = i,Zt�1
; ✓) =

1p
2⇡�

2
"

exp

(
� (zt � ↵0 � ↵1i� �1zt�1 � . . .�kzt�k)

2

2�

2
"

)

(5)
Given the prediction probability P (st = i|Z t�1

; ✓), the proba-
bility density function of zt conditional on Z t�1 can be obtained
as

f(zt|Zt�1
; ✓) = P (st = 0|Zt�1

; ✓)f(zt|st = 0,Zt�1
; ✓)

+ P (st = 0|Zt�1
; ✓)f(zt|st = 0,Zt�1

; ✓) (6)

For each state st, t = 0, 1, the filtering probabilities can be
derived by the Bayes theorem as below,

P (st = i|Zt
; ✓) =

P (st = 0|Zt�1
; ✓)f(zt|st = 0,Zt�1

; ✓)

f(zt|Zt�1
; ✓)

(7)

In addition, the relationship between the filtering probabilities
and prediction probabilities is,

P (st+1 = i|Z t
; ✓) = p0iP (st = 0|Z t

; ✓) + p1iP (st = 1|Z t
; ✓) i = 0, 1

(8)
With initial prediction probabilities P (sk = i|Zk�1

; ✓), the filter-
ing probabilities P (st = i|Z t

; ✓), t = k, . . . T. and filtering densities
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f(zt|Z t
; ✓), t = k . . . T. can be derived recursively using Eqs. (5) -

(8). Thus, the quasi-log-likelihood function can be derived as,

L(✓) = 1

T

TX

t=1

log f(zt|Z t�1
; ✓) (9)

It can be easily seen that the log-likelihood function is a complex
function of ✓, which makes it difficult to find the analytical solution
of the parameters. We used an EM algorithm for the derivation of
parameters.

3 Data and Empirical Results

The dataset consists of industry-level information of US’s insurance
industry from 1967 to 2014 from A.M Best’s Global Insurance and
Banking Database. The combined ratio is defined as below,

CombinedRatio =

IncurredLosses+ EarnedExpenses

EarnedPremiums

(10)

The empirical analysis can be processed in several steps as below.

Step 1: Stationary Test The combined ratio itself is not station-
ary as it fails to reject the null hypothesis Augmented Dickey-Fuller
(ADF) test. Let zt be the differential of combined ratios shown in
Figure 2, and the results show that it is stationary.
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Figure 2: Differentials of Combined Ratio of Insurance Industry in
USA.

Denote zt as the differentials of combined ratios, and the analysis
hereafter is based on zt.

Step 2: Determine the structure of the model To determine
the structure of the model, i.e. find the optimal number of lags of
the Markov-switching AR(k) model, AIC and BIC could be used.
The model with lowest AIC and BIC should be the model to use.
AIC and BIC are defined as below, respectively.

AIC(k) = 2k � 2 log(

ˆ

L) (11)

BIC(k) = log(n)k � 2 log(

ˆ

L) (12)

where k is the number of parameters and n is the number of
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observations. ˆL is the maximized value of the likelihood function of
the model.

By restricting the maximum lags to be 5, the AIC and BIC for
the models are listed as below,

Table 1: AIC and BIC values of Different Models

No. of Lags 1 2 3 4 5
AIC 242.55 240.70 251.83 252.43 245.94
BIC 241.30 240.32 252.47 254.21 248.96

It can be easily seen from Table 1 that the model with lag 2
have both the lowest AIC value and lowest BIC value among the 5
models. Therefore, we use the following model for further analysis,

zt = ↵0 + ↵1st + �1zt�1 + �2zt�2 + "t (13)

In addition, the AIC and BIC of model above

Step 3: Estimate the parameters Using the method in Section
2.3, the parameters can be estimated using QMLE. The estimated
values are listed in Table 2 as below,

Table 2: Estimated Parameters

Parameter p00 p11 ↵0 ↵1 �e �1 �2

Coefficient 0.68 0.72 -4.67 8.30 2.47 -0.24 -0.44
Std.Dev 0.16 0.12 0.73 0.92 0.30 0.13 0.11
P-Value 0.00 0.00 0.00 0.00 0.00 0.03 0.00

From Table 2, all the p-values are below 5%, thus all the param-
eters are significant at the 5% level. Therefore, the differentials of
the combined ratios in US’s insurance industry follows the following
process,

zt = �4.67 + 8.30st � 0.24zt�1 � 0.44zt�2 + "t, st = 0, 1 (14)

where "t ⇠ N(0, 2.472) = N(0, 6.10), and the transition matrix is
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P =

2

4 0.68 0.32

0.28 0.72

3

5 (15)

The expected duration of the state 0 (soft market) can be calcu-
lated as below,

L0 = E(Duration0) =

1X

k=1

kp

k�1
00 (1� p00) =

1

1� p00
= 3.13Y ears

Similarly, the expected duration of the state 1 (hard market) can
be calculated as below,

L1 = E(Duration1) =

1X

k=1

kp

k�1
11 (1� p11) =

1

1� p11
= 3.57Y ears

The difference between the expected durations is,

D = L0 � L1 = �0.44Y ears

In the next section, we will test HKR’s asymmetry hypothesis by
examining whether the durations of soft market and hard market are
significantly different, i.e. whether D is significant different from 0.

4 Testing HKR’s Hypothesis

Hhenriet et al. (2016) developed a general-equilibrium model for
continuous insurance sector. The numerical results of HKR shows
that the market exhibits alternating periods where premium and
profitability rise (hard markets) and fall (soft markets). The aver-
age duration of hard markets is shorter than that of soft markets,
provided that the elasticity of the demand for insurance is not too
low.

In this section, we first derive the theoretical test statistics for
testing the hypothesis H0 : D = 0.
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From Section 3, the difference between the expected durations of
two states is,

D =

1

1� p00
� 1

1� p11
(16)

For an estimated value ˆD,

ˆD = g(p̂00, p̂11) =
1

1� p̂00
� 1

1� p̂11
(17)

Applying the Lagrange mean value theorem, for some � 2 (0, 1),

ˆD �D = g(p̂00, p̂11)� g(p00, p11)

= g1 (p̂00 + �(p00 � p̂00), p̂11 + �(p11 � p̂11)(p̂00 � p00))

+ g2 (p̂00 + �(p00 � p̂00), p̂11 + �(p11 � p̂11)(p̂00 � p00))

= g1 (p00, p11) (p00 � p̂00) + g2 (p00, p11) (p00 � p̂00) (18)

where g1 =

@
@p00

g(·), g2 =

@
@p11

g(·) are the partial derivatives
with regard to p00 and p11, respectively. In the last line, p00 2
(p̂00, p00), p11 2 (p̂11, p11).

Since QMLE estimators are consistent, we have,

plim p̂00 = p00, plim p̂11 = p11 (19)

Therefore,
plim p00 = p00, plim p11 = p11 (20)

Applying the continuous mapping theorem,

plim g1 (p00, p11) = g1(p00, p11), plim g2 (p00, p11) = g2(p00, p11)

(21)
The asymptotic variance-covariance matrix for p̂00, p̂11 is,

p
n

0

@ p̂00 � p00

p̂11 � p11

1

A ⇠ N

0

@ �2
1 ⇢�1�2

⇢�1�2 �2
2

1

A (22)
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where ⇢ is the correlation coefficient of p00 and p11.
Therefore, the asymptotic variance of ˆD can be calculated as,

p
n( ˆD �D) =

p
ng1 (p00, p11) (p00 � p̂00) +

p
ng2 (p00, p11) (p00 � p̂00)

⇠ N
⇣
0, [g1 (p00, p11) , g2 (p00, p11)]

T · ⌃ · [g1 (p00, p11) , g2 (p00, p11)]
⌘

= N
⇣
0,rg (p00, p11)

T · ⌃ ·rg (p00, p11)
⌘

(23)

where
rg (p00, p11) =

"
1

(1� p00)2
,� 1

(1� p11)2

#

(24)

Thus, the asymptotic variance of ˆD is,

V ar( ˆD) = rg (p00, p11)
T ·⌃·rg (p00, p11) =

�2
1

(1� p00)4
� 2⇢�1�2

(1� p00)2(1� p11)2
+

�2
2

(1� p11)4

(25)
From Section 3, the estimated values are,

�

2
1 = 0.0244,�

2
2 = 0.0140, ⇢ = 0.3240

and
p00 = 0.68, p11 = 0.72

The asymptotic variance of ˆD can be calculated as,

V ar( ˆD) = 2.9704

Therefore, the p-value is 0.34, thus the null hypothesis can not
be rejected. In other words, the results does not support HKR’s
asymmetry hypothesis that the soft market lasts longer than the
hard market.

5 Conclusions

The underwriting “cycle” is an important topic in insurance research.
Assuming that the insurance market has both soft market phase and
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hard market phase, we apply a Markov-switching auto-regressive
model to country-level data to test the market asymmetry propo-
sition predicted by the dynamic framework proposed by Henriet,
Klimenko and Rochet (2016) in this paper. The method of quasi-
maximum likelihood is used to estimate parameters. Empirical re-
sults show that asymmetry of markets does not exist in that there
is no significant difference between the durations of the soft-market
phase and the hard-market phase, and therefore does not support
the asymmetry hypothesis that the soft market lasts longer than the
hard market.
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